References
Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M., &
Gardner, J. L. (2016). Adaptable history biases in human perceptual
decisions. Proceedings of the National Academy of Sciences,
113(25), E3548–E3557. https://doi.org/10.1073/pnas.1518786113
Acker, B. E., Pastore, R. E., & Hall, M. D. (1995). Within-category
discrimination of musical chords: Perceptual magnet or
anchor? Perception & Psychophysics, 57(6),
863–874. https://doi.org/10.3758/bf03206801
Aguilar, D. (2021). Jsonpickle (Version 2.0.0) [Computer
software]. https://github.com/jsonpickle/jsonpickle
Allaire, J., Ushey, K., Tang, Y., & Eddelbuettel, D. (2017).
Reticulate: R interface to Python. https://github.com/rstudio/reticulate
Allport, G. W. (1930). Change and decay in the visual memory image.
British Journal of Psychology, 21(2), 133–148. https://doi.org/10.1111/j.2044-8295.1930.tb00581.x
Alp, N., Kohler, P. J., Kogo, N., Wagemans, J., & Norcia, A. M.
(2018). Measuring integration processes in visual symmetry with
frequency-tagged EEG. Scientific Reports,
8(1), 6969. https://doi.org/10.1038/s41598-018-24513-w
Alvarez, G. A., & Oliva, A. (2008). The representation of simple
ensemble visual features outside the focus of attention.
Psychological Science, 19(4), 392–398. https://doi.org/10.1111/j.1467-9280.2008.02098.x
Alvarez, L., Gousseau, Y., Morel, J.-M., & Salgado, A. (2015).
Exploring the space of abstract textures by principles and random
sampling. Journal of Mathematical Imaging and Vision,
53(3), 332–345. https://doi.org/10.1007/s10851-015-0582-z
Alvarez, L., Monzón, N., & Morel, J.-M. (2021). Interactive design
of random aesthetic abstract textures by composition principles.
Leonardo, 54(2), 179–184. https://doi.org/10.1162/leon_a_01768
Analytics, R., & Weston, S. (2020). Iterators: Provides iterator
construct. https://CRAN.R-project.org/package=iterators
Appelle, S. (1972). Perception and discrimination as a function of
stimulus orientation: The "oblique effect" in man and
animals. Psychological Bulletin, 78(4), 266–278. https://doi.org/10.1037/h0033117
Archambault, A., O’Donnell, C., & Schyns, P. G. (1999). Blind to
object changes: When learning the same object at different
levels of categorization modifies its perception. Psychological
Science, 10(3), 249–255. https://doi.org/10.1111/1467-9280.00145
Arnheim, R. (1971). Entropy and art: An essay on
disorder and order. University of California Press. https://books.google.be/books?id=gpTpAAAAMAAJ
Arnheim, R. (1974). Art and visual perception. University of
California Press.
Arnheim, R. (1975). Anwendungen gestalttheoretischer
Prinzipien auf die Kunst
[Applications of Gestalt theoretical
principles to art]. In S. Ertel, L. Kemmler, & M. Stadler (Eds.),
Gestalttheorie in der modernen
Psychologie [Gestalt theory in modern
psychology] (pp. 278–284). Steinkopff. https://doi.org/10.1007/978-3-642-72312-4_28
Arnheim, R. (1986). The two faces of Gestalt psychology.
American Psychologist, 41(7), 820–824. https://doi.org/10.1037/0003-066X.41.7.820
Arnheim, R. (1987). Prägnanz and its discontents.
Gestalt Theory, 9(2), 102–107.
Arnold, J. B. (2021). Ggthemes: Extra themes, scales and geoms for
’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Arnoult, M. D. (1960). Prediction of perceptual responses from
structural characteristics of the stimulus. Perceptual and Motor
Skills, 11(3), 261–268. https://doi.org/10.2466/pms.1960.11.3.261
Ash, M. G. (1995). Gestalt psychology in
German culture, 1890–1967: Holism and the
quest for objectivity. Cambridge University Press.
Ashourian, P., & Loewenstein, Y. (2011). Bayesian inference
underlies the contraction bias in delayed comparison tasks. PLoS
ONE, 6(5), e19551. https://doi.org/10.1371/journal.pone.0019551
Attneave, F. (1955). Symmetry, information, and memory for patterns.
The American Journal of Psychology, 68(2), 209–222. https://doi.org/10.2307/1418892
Attneave, F. (1954). Some informational aspects of visual perception.
Psychological Review, 61(3), 183–193. https://doi.org/10.1037/h0054663
Attneave, F. (1957). Physical determinants of the judged complexity of
shapes. Journal of Experimental Psychology, 53(4),
221–227. https://doi.org/10.1037/h0043921
Attneave, F., & Arnoult, M. D. (1956). The quantitative study of
shape and pattern perception. Psychological Bulletin,
53(6), 452–471. https://doi.org/10.1037/h0044049
Aust, F., & Barth, M. (2022). papaja: Prepare reproducible
APA journal articles with R Markdown. https://github.com/crsh/papaja
Barth, M. (2022). tinylabels:
Lightweight variable labels. https://cran.r-project.org/package=tinylabels
Bartlett, F. C. (1932). Remembering: A study in
experimental and social psychology. Cambridge University Press.
Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense
matrix classes and methods. https://CRAN.R-project.org/package=Matrix
Berlyne, D. E. (Ed.). (1960). Conflict, arousal and curiosity.
McGraw-Hill. https://doi.org/10.1037/11164-000
Berlyne, D. E. (Ed.). (1974). Studies in the new experimental
aesthetics: Steps toward an objective psychology of
aesthetic appreciation. Hemisphere.
Bertamini, M., & Rampone, G. (2020). The study of symmetry in
empirical aesthetics. In M. Nadal & O. Vartanian (Eds.), The
Oxford Handbook of Empirical
Aesthetics. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198824350.013.23
Best, R. M., & Goldstone, R. L. (2019). Bias to (and away from) the
extreme: Comparing two models of categorical perception
effects. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 45(7), 1166–1176. https://doi.org/10.1037/xlm0000609
Biederman, I. (1987). Recognition-by-components: A theory
of human image understanding. Psychological Review,
94(2), 115–147. https://doi.org/10.1037/0033-295X.94.2.115
Bies, A. J., Blanc-Goldhammer, D. R., Boydston, C. R., Taylor, R. P.,
& Sereno, M. E. (2016). Aesthetic responses to exact fractals driven
by physical complexity. Frontiers in Human Neuroscience,
10. https://doi.org/10.3389/fnhum.2016.00210
Bischof, N. (1966). Erkenntnistheoretische
Grundlagenprobleme der Wahrnemungspsychologie
[Basic epistemological problems of the psychology of
perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.),
Allgemeine Psychologie [General
psychology]. Hogrefe.
Blake, A. B., Nazarian, M., & Castel, A. D. (2015). The
Apple of the mind’s eye: Everyday attention,
metamemory, and reconstructive memory for the Apple logo.
The Quarterly Journal of Experimental Psychology,
68(5), 858–865. https://doi.org/10.1080/17470218.2014.1002798
Bock, H., & Pfeiffer, T. (1987). Prototypikalität von
Bedeutungsvarianten des Verbs "überholen" im
Lichte der gestalttheoretischen
Bezugssystemlehre [Prototypicality of
meaning variants of the verb "to overtake" in the light of
Gestalt theoretical frame of reference theory]. Gestalt
Theory, 9(1), 3–16.
Boeykens, C., Wagemans, J., & Moors, P. (2021). Perception of the
ambiguous motion quartet: A stimulus-observer interaction
approach. Journal of Vision, 21(13), 12. https://doi.org/10.1167/jov.21.13.12
Bosch, E., Fritsche, M., Ehinger, B. V., & de Lange, F. P. (2020).
Opposite effects of choice history and evidence history resolve a
paradox of sequential choice bias. Journal of Vision,
20(12), 9–9. https://doi.org/10.1167/jov.20.12.9
Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in
visual working memory: Ensemble statistics bias memory for
individual items. Psychological Science, 22(3),
384–392. https://doi.org/10.1177/0956797610397956
Brascamp, J. W., Knapen, T. H. J., Kanai, R., Noest, A. J., van Ee, R.,
& van den Berg, A. V. (2008). Multi-timescale
perceptual history resolves visual ambiguity. PLOS ONE,
3(1), e1497. https://doi.org/10.1371/journal.pone.0001497
Braun, J., Amirshahi, S. A., Denzler, J., & Redies, C. (2013).
Statistical image properties of print advertisements, visual artworks
and images of architecture. Frontiers in Psychology,
4. https://doi.org/10.3389/fpsyg.2013.00808
Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory
for places. Cognitive Psychology, 13(2), 207–230. https://doi.org/10.1016/0010-0285(81)90008-6
Bürkner, P.-C. (2017). brms: An
R package for Bayesian multilevel models using
Stan. Journal of Statistical Software,
80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel
modeling with the R package brms. The R Journal, 10(1),
395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2021). Bayesian item response modeling in R
with brms and Stan. Journal
of Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05
Burnett, H. G., & Jellema, T. (2013).
(Re-)conceptualisation in Asperger’s syndrome and typical
individuals with varying degrees of
autistic-like traits. Journal of Autism and Developmental
Disorders, 43(1), 211–223. https://doi.org/10.1007/s10803-012-1567-z
Caddigan, E., Choo, H., Fei-Fei, L., & Beck, D. M. (2017).
Categorization influences detection: A perceptual advantage
for representative exemplars of natural scene categories. Journal of
Vision, 17(1), 21. https://doi.org/10.1167/17.1.21
Campitelli, E. (2022). Ggnewscale: Multiple fill and colour scales
in ’ggplot2’. https://CRAN.R-project.org/package=ggnewscale
Carmichael, L., Hogan, H. P., & Walter, A. A. (1932). An
experimental study of the effect of language on the reproduction of
visually perceived form. Journal of Experimental Psychology,
15(1), 73–86. https://doi.org/10.1037/h0072671
Carter, O., Snyder, J. S., Fung, S., & Rubin, N. (2014). Using
ambiguous plaid stimuli to investigate the influence of immediate prior
experience on perception. Attention, Perception, &
Psychophysics, 76(1), 133–147. https://doi.org/10.3758/s13414-013-0547-5
Chamberlain, R., & Wagemans, J. (2016). The genesis of errors in
drawing. Neuroscience & Biobehavioral Reviews, 65,
195–207. https://doi.org/10.1016/j.neubiorev.2016.04.002
Chater, N. (1996). Reconciling simplicity and likelihood principles in
perceptual organization. Psychological Review, 103(3),
566–581.
Chaussé, P. (2010). Computing generalized method of moments and
generalized empirical likelihood with R. Journal of
Statistical Software, 34(11), 1–35. https://doi.org/10.18637/jss.v034.i11
Checkosky, S. F., & Whitlock, D. (1973). Effects of pattern goodness
on recognition time in a memory search task. Journal of Experimental
Psychology, 100(2), 341–348. https://doi.org/10.1037/h0035692
Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., & Allen,
J. (2021). Htmltools: Tools for HTML. https://CRAN.R-project.org/package=htmltools
Chetverikov, A., & Kristjánsson, Á. (2016). On the joys of
perceiving: Affect as feedback for perceptual predictions.
Acta Psychologica, 169, 1–10. https://doi.org/10.1016/j.actpsy.2016.05.005
Chipman, S. F. (1977). Complexity and structure in visual patterns.
Journal of Experimental Psychology: General, 106(3),
296–301.
Chipman, S. F., & Mendelson, M. J. (1979). Influence of six types of
visual structure on complexity judgments in children and adults.
Journal of Experimental Psychology: Human Perception and
Performance, 5(2), 365–378.
Cicchini, G. M., Mikellidou, K., & Burr, D. (2017). Serial
dependencies act directly on perception. Journal of Vision,
17(14), 6. https://doi.org/10.1167/17.14.6
Claessens, P. M. E., & Wagemans, J. (2008). A Bayesian
framework for cue integration in multistable grouping:
Proximity, collinearity, and orientation priors in zigzag
lattices. Journal of Vision, 8(7), 33. https://doi.org/10.1167/8.7.33
Clarke, A. D. F., Green, P. R., Halley, F., & Chantler, M. J.
(2011). Similar symmetries: The role of wallpaper groups in
perceptual texture similarity. Symmetry, 3(2),
246–264. https://doi.org/10.3390/sym3020246
Clement, D. E. (1964). Uncertainty and latency of verbal naming
responses as correlates of pattern goodness. Journal of Verbal
Learning and Verbal Behavior, 3(2), 150–157. https://doi.org/10.1016/S0022-5371(64)80033-5
Clement, D. E., & Varnadoe, K. W. (1967). Pattern uncertainty and
the discrimination of visual patterns. Perception &
Psychophysics, 2(9), 427–431. https://doi.org/10.3758/BF03208782
Cohen, D. J. (2005). Look little, look often: The influence
of gaze frequency on drawing accuracy. Perception &
Psychophysics, 67(6), 997–1009. https://doi.org/10.3758/BF03193626
Cohen, D. J., & Bennett, S. (1997). Why can’t most people draw what
they see? Journal of Experimental Psychology. Human Perception and
Performance, 23(3), 609–621. https://doi.org/10.1037//0096-1523.23.3.609
Coppola, D. M., Purves, H. R., McCoy, A. N., & Purves, D. (1998).
The distribution of oriented contours in the real world. Proceedings
of the National Academy of Sciences of the United States of
America, 95(7), 4002–4006. https://doi.org/10.1073/pnas.95.7.4002
Corbett, J. E., Utochkin, I., & Hochstein, S. (2023). The
pervasiveness of ensemble perception: Not just your average
review. Elements in Perception. https://doi.org/10.1017/9781009222716
Corporation, M., & Weston, S. (2020). doParallel: Foreach
parallel adaptor for the ’parallel’ package. https://CRAN.R-project.org/package=doParallel
Cupchik, G. C., & Berlyne, D. E. (1979). The perception of collative
properties in visual stimuli. Scandinavian Journal of
Psychology, 20(1), 93–104. https://doi.org/10.1111/j.1467-9450.1979.tb00688.x
Curray, J. R. (1956). The analysis of two-dimensional orientation
data. The Journal of Geology, 64(2), 117–131.
de Leeuw, J. R. (2015). jsPsych: A
JavaScript library for creating behavioral experiments in a web
browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
Donderi, D. C. (2006). Visual complexity: A review.
Psychological Bulletin, 132(1), 73–97. https://doi.org/10.1037/0033-2909.132.1.73
Dunn, J. C. (1983). Spatial metrics of integral and separable
dimensions. Journal of Experimental Psychology, 9(2),
242–257. https://doi.org/10.1037/0096-1523.9.2.242
Eddelbuettel, D., & Balamuta, J. J. (2018). Extending extitR with extitC++:
A Brief Introduction to extitRcpp. The American
Statistician, 72(1), 28–36. https://doi.org/10.1080/00031305.2017.1375990
Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless
R and C++ integration. Journal of
Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08
Ellis, W. D. (1938). A source book of Gestalt
psychology. Routledge & Kegan Paul.
Eysenck, H. J. (1942). The experimental study of the ’good
Gestalt’–a new approach. Psychological Review,
49(4), 344–364. https://doi.org/10.1037/h0057013
Fan, J. E., Hawkins, R. D., Wu, M., & Goodman, N. D. (2020).
Pragmatic inference and visual abstraction enable contextual flexibility during
visual communication. Computational Brain &
Behavior, 3(1), 86–101. https://doi.org/10.1007/s42113-019-00058-7
Fan, J. E., Yamins, D. L. K., & Turk-Browne, N. B. (2018). Common
object representations for visual production and recognition.
Cognitive Science, 42(8), 2670–2698. https://doi.org/10.1111/cogs.12676
Fechner, G. T. (1860). Elemente der
Psychophysik [Elements of
psychophysics]. Leipzig: Breitkopf und
Härtel.
Fehrer, E. V. (1935). An investigation of the learning of visually
perceived forms. The American Journal of Psychology,
47(2), 187–221. https://doi.org/10.2307/1415826
Feldman, J. (2003). What is a visual object? Trends in Cognitive
Sciences, 7(6), 252–256. https://doi.org/10.1016/S1364-6613(03)00111-6
Feldman, J. (2000). Bias toward regular form in mental shape spaces.
Journal of Experimental Psychology: Human Perception and
Performance, 26(1), 152–165. https://doi.org/10.1037/0096-1523.26.1.152
Feldman, J. (2021). Mutual information and categorical perception.
Psychological Science, 32(8), 1298–1310. https://doi.org/10.1177/0956797621996663
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The
influence of categories on perception: Explaining the
perceptual magnet effect as optimal statistical inference.
Psychological Review, 116(4), 752–782. https://doi.org/10.1037/a0017196
Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent
history on perception and decision. Current Biology: CB,
27(4), 590–595. https://doi.org/10.1016/j.cub.2017.01.006
Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A
Bayesian and efficient observer model explains concurrent
attractive and repulsive history biases in visual perception.
eLife, 9, e55389. https://doi.org/10.7554/eLife.55389
Froyen, V., Feldman, J., & Singh, M. (2015). Bayesian hierarchical
grouping: Perceptual grouping as mixture estimation.
Psychological Review, 122(4), 575–597. https://doi.org/10.1037/a0039540
Gallagher, G. K., & Benton, C. P. (2022). Stimulus uncertainty
predicts serial dependence in orientation judgements. Journal of
Vision, 22(1), 6. https://doi.org/10.1167/jov.22.1.6
Garner, W. R. (1974). The processing of information and
structure. Erlbaum.
Garner, W. R., & Clement, D. E. (1963). Goodness of pattern and
pattern uncertainty. Journal of Verbal Learning and Verbal
Behavior, 2(5-6), 446–452. https://doi.org/10.1016/S0022-5371(63)80046-8
Gartus, A., & Leder, H. (2013). The small step toward asymmetry:
Aesthetic judgment of broken symmetries.
I-Perception, 4(5), 361–364. https://doi.org/10.1068/i0588sas
Gati, I., & Tversky, A. (1982). Representations of qualitative and
quantitative dimensions. Journal of Experimental Psychology: Human
Perception and Performance, 8(2), 325–340. https://doi.org/10.1037//0096-1523.8.2.325
Genz, A., & Bretz, F. (2009). Computation of multivariate normal
and t probabilities. Springer-Verlag.
Gepshtein, S., & Kubovy, M. (2005). Stability and change in
perception: Spatial organization in temporal context. Experimental
Brain Research, 160(4), 487–495. https://doi.org/10.1007/s00221-004-2038-3
Gherman, D. (2021). Svglib (Version 1.1.0) [Computer software].
https://github.com/deeplook/svglib
Gibson, J. J. (1929). The reproduction of visually perceived forms.
Journal of Experimental Psychology, 12(1), 1–39. https://doi.org/10.1037/h0072470
Gillebert, C. R., Op de Beeck, H. P., & Wagemans, J. (2009). The
influence of categorisation on the perceived shape similarity of
everyday objects. Psychologica Belgica, 48(4), 261. https://doi.org/10.5334/pb-48-4-261
Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal
rules: Visual orientation perception reflects knowledge of environmental
statistics. Nature Neuroscience, 14(7), 926–932. https://doi.org/10.1038/nn.2831
Glanzer, M., & Clark, W. H. (1963). Accuracy of perceptual recall:
An analysis of organization. Journal of Verbal Learning
& Verbal Behavior, 1, 289–299. https://doi.org/10.1016/S0022-5371(63)80008-0
Goetschalckx, L., Moors, P., Vanmarcke, S., & Wagemans, J. (2019).
Get the Picture? Goodness of Image
Organization Contributes to Image Memorability.
Journal of Cognition, 2(1), 22. https://doi.org/10.5334/joc.80
Gohel, D., & Skintzos, P. (2021). Ggiraph: Make ’ggplot2’
graphics interactive. https://CRAN.R-project.org/package=ggiraph
Goldmeier, E. (1937). Über Ähnlichkeit bei gesehenen
Figuren [About similarity in seen
figures]. Psychologische Forschung, 21, 146–208.
Goldmeier, E. (1972). Similarity in visually perceived forms.
Psychological Issues, 8(1).
Goldmeier, E. (1982). The memory trace:
Its formation and its fate. Erlbaum.
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical
perception. Wiley Interdisciplinary Reviews: Cognitive Science,
1(1), 69–78. https://doi.org/10.1002/wcs.26
Gollwitzer, A., Marshall, J., Wang, Y., & Bargh, J. A. (2017).
Relating pattern deviancy aversion to stigma and prejudice. Nature
Human Behaviour, 1(12), 920–927. https://doi.org/10.1038/s41562-017-0243-x
Graf, L. K. M., & Landwehr, J. R. (2015). A dual-process perspective
on fluency-based aesthetics: The Pleasure-Interest Model of
Aesthetic Liking. Personality and Social Psychology
Review, 19(4), 395–410. https://doi.org/10.1177/1088868315574978
Graf, L. K. M., & Landwehr, J. R. (2017). Aesthetic pleasure versus
aesthetic interest: The two routes to aesthetic liking.
Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00015
Granit, A. R. (1922). A study on the perception of form. British
Journal of Psychology. General Section, 12(3), 223–247. https://doi.org/10.1111/j.2044-8295.1922.tb00055.x
Grebenkina, M., Brachmann, A., Bertamini, M., Kaduhm, A., & Redies,
C. (2018). Edge-orientation entropy predicts preference for diverse
types of man-made images. Frontiers in Neuroscience,
12. https://doi.org/10.3389/fnins.2018.00678
Grinband, J., Hirsch, J., & Ferrera, V. P. (2006). A neural
representation of categorization uncertainty in the human brain.
Neuron, 49(5), 757–763. https://doi.org/10.1016/j.neuron.2006.01.032
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with
lubridate. Journal of Statistical
Software, 40(3), 1–25. https://www.jstatsoft.org/v40/i03/
Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman,
M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J., &
Steingroever, H. (2017). A tutorial on bridge sampling. Journal of
Mathematical Psychology, 81, 80–97. https://doi.org/10.1016/j.jmp.2017.09.005
Grünbaum, B., & Shephard, G. C. (1989). Tilings and
patterns. W. H. Freeman; company.
Güçlütürk, Y., Jacobs, R. H. A. H., & van Lier, R. (2016). Liking
versus complexity: Decomposing the inverted u-curve. Frontiers in
Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00112
Haaf, J. M., & Rouder, J. N. (2019). Some do and some don’t?
Accounting for variability of individual difference
structures. Psychonomic Bulletin & Review, 26(3),
772–789. https://doi.org/10.3758/s13423-018-1522-x
Hahn, M., & Wei, X.-X. (2022). A unifying theory explains
seemingly contradicting biases in perceptual estimation [Preprint].
bioRxiv. https://doi.org/10.1101/2022.12.12.519538
Hamada, J., & Ishihara, T. (1988). Complexity and goodness of dot
patterns varying in symmetry. Psychological Research,
50(3), 155–161. https://doi.org/10.1007/BF00310176
Hammad, S., Juricevic, I., Rajani, S., & Kennedy, J. (2008). Angle
illusion on a picture’s surface. Spatial Vision,
21(3-5), 451–462. https://doi.org/10.1163/156856808784532554
Hanley, J. R., & Roberson, D. (2011). Categorical perception effects
reflect differences in typicality on within-category trials.
Psychonomic Bulletin & Review, 18(2), 355–363. https://doi.org/10.3758/s13423-010-0043-z
Harnad, S. (1987). Psychophysical and cognitive aspects of categorical
perception: A critical overview. In Categorical
perception: The groundwork of cognition.
Cambridge University Press.
Harnad, S. (2003). Categorical perception. Encyclopedia of Cognitive
Science.
Hartendorp, M. O., Van der Stigchel, S., Burnett, H. G., Jellema, T.,
Eilers, P. H. C., & Postma, A. (2010). Categorical perception of
morphed objects using a free-naming experiment. Visual
Cognition, 18(9), 1320–1347. https://doi.org/10.1080/13506285.2010.482774
Hellström, Å. (2007). Temporal asymmetry and "magnet effect"" in
similarity and discrimination of prototypical and nonprototypical
stimuli: Consequences of differential sensation weighting.
Fechner Day 2007: Proceedings of the 23rd
Annual Meeting of the International Society for
Psychophysics, 283–288.
Hendrickx, M., & Wagemans, J. (1999). A critique of
Leyton’s theory of perception and cognition.
Review of Symmetry,
Causality, Mind, by Michael
Leyton. Journal of Mathematical Psychology,
43(2), 314–345. https://doi.org/10.1006/jmps.1998.1232
Henle, M. (1987). On breaking out of dichotomies. Gestalt
Theory, 9(3/4), 140–149.
Henry, L., & Wickham, H. (2020). Purrr: Functional programming
tools. https://CRAN.R-project.org/package=purrr
Henry, L., Wickham, H., & Chang, W. (2020). Ggstance: Horizontal
’ggplot2’ components. https://CRAN.R-project.org/package=ggstance
Hester, J., & Bryan, J. (2022). Glue: Interpreted string
literals. https://CRAN.R-project.org/package=glue
Hochberg, J. (2003). Acts of perceptual inquiry: Problems for any
stimulus-based simplicity theory. Acta Psychologica,
114(3), 215–228. https://doi.org/10.1016/j.actpsy.2003.07.002
Hochberg, J. (1968). Perception. Prentice Hall.
Hochberg, J., & McAlister, E. (1953). A quantitative approach, to
figural "goodness". Journal of Experimental Psychology,
46(5), 361–364. https://doi.org/10.1037/h0055809
Hochstein, S., & Ahissar, M. (2002). View from the top:
Hierarchies and reverse hierarchies in the visual system.
Neuron, 36(5), 791–804. https://doi.org/10.1016/S0896-6273(02)01091-7
Hoffman, D. D. (2009). The interface theory of perception:
Natural selection drives true perception to swift
extinction. In S. J. Dickinson, A. Leonardis, B. Schiele, & M. J.
Tarr (Eds.), Object Categorization (pp. 148–166).
Cambridge University Press. https://doi.org/10.1017/CBO9780511635465.009
Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface
theory of perception. Psychonomic Bulletin & Review,
22(6), 1480–1506. https://doi.org/10.3758/s13423-015-0890-8
Holzman, P. S., & Gardner, R. W. (1960). Leveling-sharpening and
memory organization. Journal of Abnormal and Social Psychology,
61(2), 176–180. https://doi.org/10.1037/h0041295
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The
precision of mental representations affects attentional guidance and
decision-making in visual search. Attention, Perception, &
Psychophysics, 77(1), 128–149. https://doi.org/10.3758/s13414-014-0764-6
Huang, L. (2015). Visual features: Featural strength and
visual strength are two dissociable dimensions. Scientific
Reports, 5(1), 13769. https://doi.org/10.1038/srep13769
Huang, L. (2022). FVS 2.0: A unifying
framework for understanding the factors of visual-attentional
processing. Psychological Review, 129(4), 696–731. https://doi.org/10.1037/rev0000314
Hubbell, M. B. (1940). Configurational properties
considered ’good’ by naive subjects. The American Journal of
Psychology, 53(1), 46. https://doi.org/10.2307/1415960
Hübner, R., & Fillinger, M. G. (2016). Comparison of objective
measures for predicting perceptual balance and visual aesthetic
preference. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00335
Hüppe, A. (1984). Prägnanz - ein gestalttheoretischer
Grundbegriff: Experimentelle Untersuchungen
[Prägnanz - a basic concept in gestalt theory:
Experimental investigations].
Profil-Verlag.
Irwin, D. E., & Pachella, R. G. (1985). Effects of stimulus
probability and visual similarity on stimulus encoding. The American
Journal of Psychology, 98(1), 85. https://doi.org/10.2307/1422769
Jacobsen, T., & Höfel, L. (2002). Aesthetic judgments of novel
graphic patterns: Analyses of individual judgments. Perceptual and
Motor Skills, 95(3), 755–766. https://doi.org/10.2466/pms.2002.95.3.755
Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An
overview of quantitative approaches in Gestalt perception.
Vision Research, 126, 3–8. https://doi.org/10.1016/j.visres.2016.06.004
Jastrow, J. (1899). The mind’s eye. Popular Science Monthly,
54, 299–312.
Kanai, R., & Rees, G. (2011). The structural basis of
inter-individual differences in human behaviour and cognition.
Nature Reviews Neuroscience, 12(4), 231–242. https://doi.org/10.1038/nrn3000
Kanizsa, G. (1975). "Pragnanz" as an obstacle to
problem-solving. Giornale Italiano Di Psicologia, 2,
417–425.
Kanizsa, G. (1979). Organization in vision: Essays on
Gestalt perception. Praeger.
Kanizsa, G., & Luccio, R. (1986). Die
Doppeldeutigkeiten der Prägnanz
[The ambiguities of Prägnanz]. Gestalt
Theory, 8, 99–135.
Kay, M. (2021a). ggdist: Visualizations
of distributions and uncertainty. https://doi.org/10.5281/zenodo.3879620
Kay, M. (2021b). tidybayes: Tidy data
and geoms for Bayesian models. https://doi.org/10.5281/zenodo.1308151
Kayaert, G., Op de Beeck, H. P., & Wagemans, J. (2011). Dynamic
prototypicality effects in visual search. Journal of Experimental
Psychology. General, 140(3), 506–519. https://doi.org/10.1037/a0023494
Kennedy, G. J., Orbach, H. S., & Loffler, G. (2008). Global shape
versus local feature: An angle illusion. Vision
Research, 48(11), 1281–1289. https://doi.org/10.1016/j.visres.2008.03.003
Khayat, N., & Hochstein, S. (2019). Relating categorization to set
summary statistics perception. Attention, Perception, &
Psychophysics. https://doi.org/10.3758/s13414-019-01792-7
Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017).
Serial dependence across perception, attention, and memory. Trends
in Cognitive Sciences, 21(7), 493–497. https://doi.org/10.1016/j.tics.2017.04.011
Koenderink, J. (2014). The All Seeing Eye?
Perception, 43(1), 1–6. https://doi.org/10.1068/p4301ed
Koenderink, J. (2015). Esse est percipi & verum factum est.
Psychonomic Bulletin & Review, 22(6), 1530–1534.
https://doi.org/10.3758/s13423-014-0754-7
Koenderink, J. (2019). Vision, an optical user interface.
Perception, 0301006619853758. https://doi.org/10.1177/0301006619853758
Koenderink, J., van Doorn, A., & Pinna, B. (2018). Measures of
Prägnanz? Gestalt Theory, 40, 7–28. https://doi.org/10.2478/gth-2018-0002
Koffka, K. (1935). Principles of Gestalt
psychology. Harcourt, Brace.
Koffka, K. (1940). Problems in the psychology of art. In R. Bernheimer
(Ed.), Art: A Bryn Mawr symposium
(pp. 180–273). New York: Oriole Editions.
Kohler, P. J., Clarke, A., Yakovleva, A., Liu, Y., & Norcia, A. M.
(2016). Representation of maximally regular textures in human visual
cortex. The Journal of Neuroscience, 36(3), 714–729.
https://doi.org/10.1523/JNEUROSCI.2962-15.2016
Köhler, W. (1920). Die physischen Gestalten in
Ruhe und im stationären Zustand
[The physical Gestalten at rest and in
stationary state]. Friedr. Vieweg & Sohn.
Köhler, W. (1940). Dynamics in psychology. Liveright.
Köhler, W. (1993). Letter to Abraham S. Luchins
(December 6, 1951). "... The principle of
Prägnanz is probably in need of a revised formulation...".
Gestalt Theory, 15(3–4), 297–298. (Original work
published 1951)
Kondo, A., Murai, Y., & Whitney, D. (2022). The test-retest
reliability and spatial tuning of serial dependence in orientation
perception. Journal of Vision, 22(4), 5. https://doi.org/10.1167/jov.22.4.5
Koutstaal, W., & Schacter, D. L. (1997). Gist-based false
recognition of pictures in older and younger adults. Journal of
Memory and Language, 37(4), 555–583. https://doi.org/10.1006/jmla.1997.2529
Krakowski, C.-S., Poirel, N., Vidal, J., Roëll, M., Pineau, A., Borst,
G., & Houdé, O. (2016). The forest, the trees, and the leaves:
Differences of processing across development.
Developmental Psychology, 52(8), 1262–1272. https://doi.org/10.1037/dev0000138
Kruse, P. (1986). Wie unabhängig ist das
Wahrnehmungsobjekt vom Prozeß der Identifikation: Ein Kommentar zu G. Kanizsa und R. Luccio
[How independent is the perceptual object from the process
of identification: A comment on G.
Kanizsa and R. Luccio]. Gestalt Theory, 8(2),
141–143.
Kubilius, J., Sleurs, C., & Wagemans, J. (2017). Sensitivity to
nonaccidental configurations of two-line stimuli. I-Perception,
8(2). https://doi.org/10.1177/2041669517699628
Kubilius, J., Wagemans, J., & Op de Beeck, H. P. (2014). Encoding of
configural regularity in the human visual system. Journal of
Vision, 14(9), 11. https://doi.org/10.1167/14.9.11
Kubovy, M., & Berg, M. (2002). Oblique effects in grouping:
Surprising individual differences. Journal of
Vision, 2(7), 480–480. https://doi.org/10.1167/2.7.480
Kubovy, M., Holcombe, A. O., & Wagemans, J. (1998). On the
lawfulness of grouping by proximity. Cognitive Psychology,
35(1), 71–98. https://doi.org/10.1006/cogp.1997.0673
Kubovy, M., & van den Berg, M. (2008). The whole is equal to the sum
of its parts: A probabilistic model of grouping by
proximity and similarity in regular patterns. Psychological
Review, 115(1), 131–154. https://doi.org/10.1037/0033-295X.115.1.131
Kubovy, M., & Wagemans, J. (1995). Grouping by proximity and
multistability in dot lattices: A quantitative
Gestalt theory. Psychological Science,
6(4), 225–234. https://doi.org/10.1111/j.1467-9280.1995.tb00597.x
Kuhl, P. K. (1991). Human adults and human infants show a
“perceptual magnet effect” for the prototypes of speech
categories, monkeys do not. Perception & Psychophysics,
50(2), 93–107. https://doi.org/10.3758/BF03212211
Lab, V. (2021). Colour (Version 0.1.5) [Computer software]. http://github.com/vaab/colour
Langlois, T. A., Jacoby, N., Suchow, J. W., & Griffiths, T. L.
(2021). Serial reproduction reveals the geometry of visuospatial
representations. Proceedings of the National Academy of
Sciences, 118(13), e2012938118. https://doi.org/10.1073/pnas.2012938118
Lee, K., Byatt, G., & Rhodes, G. (2000). Caricature effects,
distinctiveness, and identification: Testing the face-space
framework. Psychological Science, 11(5), 379–385. https://doi.org/10.1111/1467-9280.00274
Leeuwenberg, E. L. J., & Boselie, F. (1988). Against the likelihood
principle in visual form perception. Psychological Review,
95(4), 485–491. https://doi.org/10.1037/0033-295x.95.4.485
Leeuwenberg, E. L. J., & van der Helm, P. A. (2012). Structural
Information Theory: The simplicity of visual
form. Cambridge University Press. https://doi.org/10.1017/CBO9781139342223
Leeuwenberg, E. L. J., & van der Helm, P. A. (1991). Unity and
variety in visual form. Perception, 20(5), 595–622. https://doi.org/10.1068/p200595
Legrenzi, P. (1994). Kanizsa’s analysis of
"Prägnanz" as an obstacle to problem solving and the theory
of mental models. Japanese Psychological Research,
36(3), 121–125.
Leyton, M. (1992). Symmetry, causality, mind. MIT
Press.
Lieder, I., Adam, V., Frenkel, O., Jaffe-Dax, S., Sahani, M., &
Ahissar, M. (2019). Perceptual bias reveals slow-updating in autism and
fast-forgetting in dyslexia. Nature Neuroscience,
22(2), 256–264. https://doi.org/10.1038/s41593-018-0308-9
Locher, P. J., Stappers, P. J., & Overbeeke, K. (1998). The role of
balance as an organizing design principle underlying adults’
compositional strategies for creating visual displays. Acta
Psychologica, 99(2), 141–161. https://doi.org/10.1016/S0001-6918(98)00008-0
Long, B., Fan, J. E., Huey, H., Chai, Z., & Frank, M. C. (2021).
Parallel developmental changes in children’s production and
recognition of line drawings of visual concepts [Preprint].
PsyArXiv. https://doi.org/10.31234/osf.io/5yv7x
Long, B., Wang, Y., Christie, S., Frank, M. C., & Fan, J. E. (2022).
Developmental consistency in children’s drawings of object
categories [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/fpebs
Luccio, R. (2019). Perceptual simplicity: The true role of
Prägnanz and Occam. Gestalt Theory,
41(3), 263–276. https://doi.org/10.2478/gth-2019-0024
Luchins, A. S., & Luchins, E. H. (1998). Commentary on Vicario’s "On Wertheimer’s principles of
organization". Gestalt Theory, 20(4), 270–282.
Manassi, M., Liberman, A., Kosovicheva, A., Zhang, K., & Whitney, D.
(2018). Serial dependence in position occurs at the time of perception.
Psychonomic Bulletin & Review, 25(6), 2245–2253.
https://doi.org/10.3758/s13423-018-1454-5
Mao, J., & Stocker, A. A. (2022). Holistic inference explains
human perception of stimulus orientation [Preprint].
bioRxiv. https://doi.org/10.1101/2022.06.24.497534
Mardia, K. V., & Jupp, P. E. (2000). Directional
Statistics. Wiley.
Marković, S., & Gvozdenovi, V. (2001). Symmetry, complexity and
perceptual economy: Effects of minimum and maximum
simplicity conditions. Visual Cognition, 8(3-5),
305–327. https://doi.org/10.1080/13506280143000025
Martin, P., Uy, N., Kvapil, M., & Friedenberg, J. (2020). The
aesthetics of frieze patterns A preference for emergent
features [Poster]. https://doi.org/10.13140/RG.2.2.34413.74721
Mather, G. (2018). Visual image statistics in the history of
Western art. Art and Perception, 6(2-3),
97–115. https://doi.org/10.1163/22134913-20181092
Mather, G. (2020). Aesthetic image statistics vary with artistic genre.
Vision, 4(1), 10. https://doi.org/10.3390/vision4010010
Mattar, M. G., Carter, M. V., Zebrowitz, M. S., Thompson-Schill, S. L.,
& Aguirre, G. K. (2018). Individual differences in response
precision correlate with adaptation bias. Journal of Vision,
18(13). https://doi.org/10.1167/18.13.18
Mattar, M. G., Kahn, D. A., Thompson-Schill, S. L., & Aguirre, G. K.
(2016). Varying timescales of stimulus integration unite neural adaptation and
prototype formation. Current
Biology, 26(13), 1669–1676. https://doi.org/10.1016/j.cub.2016.04.065
Matthews, W. J., & Adams, A. (2008). Another reason why adults find
it hard to draw accurately. Perception, 37(4),
628–630. https://doi.org/10.1068/p5895
Mauro, R., & Kubovy, M. (1992). Caricature and face recognition.
Memory & Cognition, 20(4), 433–440. https://doi.org/10.3758/BF03210927
Maus, G. W., Chaney, W., Liberman, A., & Whitney, D. (2013). The
challenge of measuring long-term positive aftereffects. Current
Biology : CB, 23(10). https://doi.org/10.1016/j.cub.2013.03.024
Mayer, S. (2021). Imagefluency: Image statistics based
on processing fluency. Zenodo. https://doi.org/10.5281/zenodo.5614666
Mayer, S., & Landwehr, J. R. (2018a). Objective measures of design
typicality. Design Studies, 54, 146–161. https://doi.org/10.1016/j.destud.2017.09.004
Mayer, S., & Landwehr, J. R. (2018b). Quantifying visual aesthetics
based on processing fluency theory: Four algorithmic
measures for antecedents of aesthetic preferences. Psychology of
Aesthetics, Creativity, and the Arts, 12(4), 399–431. https://doi.org/10.1037/aca0000187
McCloud, S. (1993). Understanding comics: The invisible art.
HarperCollins Publishers.
McGovern, D. P., Walsh, K. S., Bell, J., & Newell, F. N. (2017).
Individual differences in context-dependent effects reveal common
mechanisms underlying the direction aftereffect and direction repulsion.
Vision Research, 141, 109–116. https://doi.org/10.1016/j.visres.2016.08.009
McMurray, B. (2022). The myth of categorical perception
[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/dq7ej
Medin, D. L. (1989). Concepts and conceptual structure. American
Psychologist, 44(12), 1469–1481. https://doi.org/10.1037/0003-066X.44.12.1469
Medin, D. L., & Barsalou, L. W. (1987). Categorization processes and
categorical perception. In Categorical perception: The
groundwork of cognition (pp. 455–490). Cambridge University
Press.
Mersmann, O., Trautmann, H., Steuer, D., & Bornkamp, B. (2018).
Truncnorm: Truncated normal distribution. https://CRAN.R-project.org/package=truncnorm
Metzger, W. (1941). Psychologie: Die Entwicklung ihrer
Grundannahmen seit der Einführung des
Experiments [Psychology: The
development of its basic assumptions since the introduction of the
experiment.]. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-642-53395-2
Metzger, W. (1954). Grundbegriffe der
Gestaltpsychologie. In Aktuelle Probleme
der Gestalttheorie (Ajuriaguerra, Juan de).
Metzger, W. (1966). Figural-wahrnemung [Figural
perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.),
Allgemeine Psychologie [General
psychology] (pp. 693–744). Hogrefe.
Metzger, W. (1975). Gesetze des Sehens
[Laws of seeing] (Third edition). Kramer.
Metzger, W. (2006). Laws of seeing. MIT Press. (Original work
published 1936)
Microsoft, & Weston, S. (2020). Foreach: Provides foreach
looping construct. https://CRAN.R-project.org/package=foreach
Miller, J., & Schwarz, W. (2018). Implications of individual
differences in on-average null effects. Journal of Experimental
Psychology: General, 147(3), 377–397. https://doi.org/10.1037/xge0000367
Miller, M. B., & Gazzaniga, M. S. (1998). Creating false memories
for visual scenes. Neuropsychologia, 36(6), 513–520.
https://doi.org/10.1016/S0028-3932(97)00148-6
Mitchell, P., Ropar, D., Ackroyd, K., & Rajendran, G. (2005). How
perception impacts on drawings. Journal of Experimental Psychology:
Human Perception and Performance, 31(5), 996–1003. https://doi.org/10.1037/0096-1523.31.5.996
Moitzi, M. (2021). Svgwrite (Version 1.4.1) [Computer
software]. http://github.com/mozman/svgwrite.git
Mollon, J. D., Bosten, J. M., Peterzell, D. H., & Webster, M. A.
(2017). Individual differences in visual science: What can
be learned and what is good experimental practice? Vision
Research, 141, 4–15. https://doi.org/10.1016/j.visres.2017.11.001
Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation
of bayes factors for common designs. https://CRAN.R-project.org/package=BayesFactor
Müller, K. (2020). Here: A simpler way to find your files. https://CRAN.R-project.org/package=here
Müller, K., & Wickham, H. (2022). Tibble: Simple data
frames. https://CRAN.R-project.org/package=tibble
Murdoch, D., & Chow, E. D. (2020). Ellipse: Functions for
drawing ellipses and ellipse-like confidence regions. https://CRAN.R-project.org/package=ellipse
Muth, C., & Carbon, C.-C. (2013). The Aesthetic Aha:
On the pleasure of having insights into
Gestalt. Acta Psychologica, 144(1),
25–30. https://doi.org/10.1016/j.actpsy.2013.05.001
Muth, C., & Carbon, C.-C. (2016). SeIns: Semantic instability in art. Art and Perception, 4(1-2),
145–184. https://doi.org/10.1163/22134913-00002049
Muth, C., Pepperell, R., & Carbon, C.-C. (2013). Give me Gestalt! Preference for cubist artworks revealing high detectability of
objects. Leonardo, 46(5),
488–489. https://doi.org/10.1162/LEON_a_00649
Muth, C., Westphal-Fitch, G., & Carbon, C.-C. (2019). Seeking
(dis)order: Ordering appeals but slight disorder and
complex order trigger interest. Psychology of Aesthetics,
Creativity, and the Arts. https://doi.org/10.1037/aca0000284
Nadal, M., Munar, E., Marty, G., & Cela-Conde, C. J. (2010). Visual
complexity and beauty appreciation: Explaining the
divergence of results. Empirical Studies of the Arts,
28(2), 173–191. https://doi.org/10.2190/EM.28.2.d
Necker, L. A. (1832). Observations on some remarkable optical phaenomena
seen in Switzerland; and on an optical phaenomenon which
occurs on viewing a figure of a crystal or geometrical solid. London
and Edinburgh Philosophical Magazine and Journal of Science. Third
Series, 1, 329–337.
Newell, A. (1973). You can’t play 20 questions with nature and win:
Projective comments on the papers of this
symposium. In Visual Information Processing
(pp. 283–308). Elsevier. https://doi.org/10.1016/B978-0-12-170150-5.50012-3
Newell, F. N., & Bulthoff, H. H. (2002). Categorical perception of
familiar objects. Cognition, 85, 113–143. https://doi.org/10.1016/S0010-0277(02)00104-X
Ni, L., & Stocker, A. A. (2023). Efficient sensory encoding predicts
robust averaging. Cognition, 232, 105334. https://doi.org/10.1016/j.cognition.2022.105334
Noel, J.-P., Zhang, L.-Q., Stocker, A. A., & Angelaki, D. E. (2021).
Individuals with autism spectrum disorder have altered visual encoding
capacity. PLOS Biology, 19(5), e3001215. https://doi.org/10.1371/journal.pbio.3001215
Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and
classification. Cognitive Psychology, 23(1), 94–140.
https://doi.org/10.1016/0010-0285(91)90004-8
Ooms, J. (2021). Magick: Advanced graphics and image-processing in
r. https://CRAN.R-project.org/package=magick
Op de Beeck, H., Wagemans, J., & Vogels, R. (2003a). Asymmetries in
stimulus comparisons by monkey and man.
Current Biology, 13(20), 1803–1808. https://doi.org/10.1016/j.cub.2003.09.036
Op de Beeck, H., Wagemans, J., & Vogels, R. (2003b). The effect of
category learning on the representation of shape:
Dimensions can be biased but not differentiated.
Journal of Experimental Psychology: General, 132(4),
491–511. https://doi.org/10.1037/0096-3445.132.4.491
Ostrofsky, J., Kozbelt, A., & Cohen, D. J. (2015). Observational
drawing biases are predicted by biases in perception:
Empirical support of the misperception hypothesis of
drawing accuracy with respect to two angle illusions. Quarterly
Journal of Experimental Psychology, 68(5), 1007–1025. https://doi.org/10.1080/17470218.2014.973889
Ostrofsky, J., Kozbelt, A., & Seidel, A. (2012). Perceptual
constancies and visual selection as predictors of realistic drawing
skill. Psychology of Aesthetics, Creativity, and the Arts,
6(2), 124–136. https://doi.org/10.1037/a0026384
Palmer, S. E. (1982). Symmetry, transformation, and the structure of
perceptual systems. In J. Beck (Ed.), Organization and
representation in perception (pp. 95–144). Lawrence Erlbaum.
Palmer, S. E. (1991). Goodness, Gestalt, groups, and
Garner: Local symmetry subgroups as a theory
of figural goodness. In G. R. Lockhead & J. R. Pomerantz (Eds.),
The perception of structure: Essays in honor of
Wendell R. Garner (pp. 23–39).
American Psychological Association. https://doi.org/10.1037/10101-001
Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual
aesthetics and human preference. Annual Review of Psychology,
64(1), 77–107. https://doi.org/10.1146/annurev-psych-120710-100504
Panis, S., Wagemans, J., & Op de Beeck, H. P. (2011). Dynamic
norm-based encoding for unfamiliar shapes in human visual cortex.
Journal of Cognitive Neuroscience, 23(7), 1829–1843.
https://doi.org/10.1162/jocn.2010.21559
Pascucci, D., Mancuso, G., Santandrea, E., Libera, C. D., Plomp, G.,
& Chelazzi, L. (2019). Laws of concatenated perception:
Vision goes for novelty, decisions for perseverance.
PLOS Biology, 17(3), e3000144. https://doi.org/10.1371/journal.pbio.3000144
Pascucci, D., Tanrikulu, Ö. D., Ozkirli, A., Houborg, C., Ceylan, G.,
Zerr, P., Rafiei, M., & Kristjánsson, Á. (2023). Serial dependence
in visual perception: A review. Journal of Vision,
23(1), 9. https://doi.org/10.1167/jov.23.1.9
Pastore, R. E. (1987). Categorical perception: Some
psychophysical models. In Categorical perception: The
groundwork of cognition (pp. 29–52). Cambridge University
Press.
Patching, G. R., Englund, M. P., & Hellström, Å. (2012). Time- and
space-order effects in timed discrimination of brightness and size of
paired visual stimuli. Journal of Experimental Psychology: Human
Perception and Performance, 38(4), 915–940. https://doi.org/10.1037/a0027593
Pedersen, T. L. (2021). Ggforce: Accelerating ’ggplot2’. https://CRAN.R-project.org/package=ggforce
Pedersen, T. L. (2022). Patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork
Peirce, J. W. (2007). PsychoPy–Psychophysics
software in Python. Journal of Neuroscience
Methods, 162(1), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
Pepperell, R. (2018). Art, energy, and the brain. In J. F. Christensen
& A. Gomila (Eds.), Progress in Brain Research
(Vol. 237, pp. 417–435). Elsevier. https://doi.org/10.1016/bs.pbr.2018.03.022
Pérez, F., & Granger, B. E. (2007). IPython: A system for
interactive scientific computing. Computing in Science &
Engineering, 9(3). https://doi.org/10.1109/MCSE.2007.53
Petermann, B. (1931). Das Gestaltproblem in der
Psychologie im Lichte analytischer Besinnung: Ein Versuch zu
grundsätzlicher Orientierung [The
Gestalt problem in psychology in the light of analytical
reflection: An attempt at fundamental orientation].
Verlag von Johann Ambrosius.
Peterson, M. A., & Gibson, B. S. (1994). Object recognition
contributions to figure-ground organization: Operations on
outlines and subjective contours. Perception &
Psychophysics, 56(5), 551–564. https://doi.org/10.3758/BF03206951
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA:
Convergence diagnosis and output analysis for MCMC. R News,
6(1), 7–11. https://journal.r-project.org/archive/
Poirel, N., Pineau, A., & Mellet, E. (2006). Implicit identification
of irrelevant local objects interacts with global/local processing of
hierarchical stimuli. Acta Psychologica, 122(3),
321–336. https://doi.org/10.1016/j.actpsy.2005.12.010
Polk, T. A., Behensky, C., Gonzalez, R., & Smith, E. E. (2002).
Rating the similarity of simple perceptual stimuli: Asymmetries induced
by manipulating exposure frequency. Cognition, 82(3),
B75–B88. https://doi.org/10.1016/S0010-0277(01)00151-2
Pomerantz, J. R. (1977). Pattern goodness and speed of encoding.
Memory & Cognition, 5(2), 235–241. https://doi.org/10.3758/BF03197367
Pomerantz, J. R., & Garner, W. R. (1973). The role of configuration
and target discriminability in a visual search task. Memory &
Cognition, 1(1), 64–68. https://doi.org/10.3758/BF03198070
Pomerantz, J. R., & Kubovy, M. (1986). Theoretical approaches to
perceptual organization: Simplicity and likelihood
principles. In Handbook of perception and human performance,
Vol. 2: Cognitive processes and
performance. (pp. 1–46). John Wiley & Sons.
Port, A. (2021). Svgpathtools (Version 1.4.1) [Computer
software]. https://github.com/mathandy/svgpathtools
Post, R. A. G., Blijlevens, J., & Hekkert, P. (2016).
“To preserve unity while almost allowing for
chaos”: Testing the aesthetic principle of
unity-in-variety in product design. Acta Psychologica,
163, 142–152. https://doi.org/10.1016/j.actpsy.2015.11.013
Prasad, D., & Bainbridge, W. A. (2022). The visual
Mandela effect as evidence for shared and specific false
memories across people. Psychological Science, 33(12),
1971–1988. https://doi.org/10.1177/09567976221108944
Quinlan, P. T., & Wilton, R. N. (1998). Grouping by proximity or
similarity? Competition between the Gestalt
principles in vision. Perception, 27(4), 417–430. https://doi.org/10.1068/p270417
Quinn, P. C. (2000). Perceptual reference points for form and
orientation in young infants: Anchors or magnets?
Perception & Psychophysics, 62(8), 1625–1633. https://doi.org/10.3758/BF03212160
R Core Team. (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rausch, E. (1952). Struktur und Metrik
figural-optischer Wahrnehmung [Structure and metrics
of figural-optical perception]. Verlag Dr. Waldemar Kramer.
Rausch, E. (1966). Das Eigenschaftsproblem in der
Gestalttheorie der Wahrnemung
[The property problem in the Gestalt theory of
perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.),
Allgemeine Psychologie [General
psychology] (pp. 866–953). Hogrefe.
Rausch, E. (1979/1992). Neun Wünsche an die
Zukunft der Psychologie
(Auszugsweiser Nachdruck eines 1979
erschienenen Gesprächs mit E. Rausch)
[Nine wishes for the future of psychology
(Excerpt reprint of a 1979 reprint of a conversation with
E. Rausch published in 1979)]. Gestalt Theory,
14(2), 143–144.
Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding
efficiency in visual search. Journal of Experimental Psychology:
General, 135(1), 116–131. https://doi.org/10.1037/0096-3445.135.1.116
Redies, C., Brachmann, A., & Wagemans, J. (2017). High entropy of
edge orientations characterizes visual artworks from diverse cultural
backgrounds. Vision Research, 133, 130–144. https://doi.org/10.1016/j.visres.2017.02.004
Regebro, L. (2021). Svg.path (Version 4.1) [Computer software].
https://github.com/regebro/svg.path
Repp, B. H., & Liberman, A. M. (1987). Phonetic category boundaries
are flexible. In Categorical perception: The groundwork
of cognition (pp. 89–112). Cambridge University Press.
Rhodes, G., Brennan, S., & Carey, S. (1987). Identification and
ratings of caricatures: Implications for mental
representations of faces. Cognitive Psychology, 19(4),
473–497. https://doi.org/10.1016/0010-0285(87)90016-8
Rhodes, G., & McLean, I. G. (1990). Distinctiveness and expertise
effects with homogeneous stimuli: Towards a model of
configural coding. Perception, 19(6), 773–794. https://doi.org/10.1068/p190773
Riou, B., Lesourd, M., Brunel, L., & Versace, R. (2011). Visual
memory and visual perception: When memory improves visual search.
Memory & Cognition, 39(6), 1094–1102. https://doi.org/10.3758/s13421-011-0075-2
Roberson, D., Damjanovic, L., & Pilling, M. (2007). Categorical
perception of facial expressions: Evidence for a
“category adjustment” model. Memory &
Cognition, 35(7), 1814–1829. https://doi.org/10.3758/BF03193512
Roberson, D., Hanley, J. R., & Pak, H. (2009). Thresholds for color
discrimination in English and Korean speakers.
Cognition, 112(3), 482–487. https://doi.org/10.1016/j.cognition.2009.06.008
Robert, M. B. L. (1999). A unified account of the effects of
caricaturing faces. Visual Cognition, 6(1), 1–42. https://doi.org/10.1080/713756800
Robinson, A., Becker, R., the ReportLab team, & the community.
(2021). Reportlab: The Reportlab Toolkit (Version
3.6.1) [Computer software]. http://www.reportlab.com/
Rodríguez, J., Bortfeld, H., Rudomín, I., Hernández, B., &
Gutiérrez-Osuna, R. (2009). The reverse-caricature effect revisited:
Familiarization with frontal facial caricatures improves
veridical face recognition. Applied Cognitive Psychology,
23(5), 733–742. https://doi.org/10.1002/acp.1539
Roediger III, H. L., & McDermott, K. B. (1995). Creating false
memories: Remembering words not presented in lists.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 21(4), 803–814. https://doi.org/10.1037/0278-7393.21.4.803
Rogers, B. (2014). Delusions about Illusions.
Perception, 43(9), 840–845. https://doi.org/10.1068/p7731
Rosch, E. (1973). On the internal structure of perceptual and semantic
categories. In T. E. Moore (Ed.), Cognitive development and
acquisition of language (pp. 111–144). Academic Press.
https://doi.org/10.1016/B978-0-12-505850-6.50010-4
Rosch, E. (1975). Cognitive reference points. Cognitive
Psychology, 7(4), 532–547. https://doi.org/10.1016/0010-0285(75)90021-3
Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B.
Lloyd (Eds.), Cognition and categorization (pp. 27–48).
Lawrence Erlbaum.
Rosielle, L. J., & Hite, L. A. (2009). The caricature effect in
drawing: Evidence for the use of categorical relations when
drawing abstract pictures. Perception, 38(3), 357–375.
https://doi.org/10.1068/p5831
Rouder, J. N. (2019). On the interpretation of Bayes
Factors: A reply to de
Heide and Grunwald [Preprint].
PsyArXiv. https://doi.org/10.31234/osf.io/m6dhw
Rouder, J. N. (2014). Optional stopping: No problem for
Bayesians. Psychonomic Bulletin & Review,
21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4
Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual
differences in experimental tasks. Psychonomic Bulletin &
Review, 26(2), 452–467. https://doi.org/10.3758/s13423-018-1558-y
Sablé-Meyer, M., Fagot, J., Caparos, S., van Kerkoerle, T., Amalric, M.,
& Dehaene, S. (2021). Sensitivity to geometric shape regularity in
humans and baboons: A putative signature of human
singularity. Proceedings of the National Academy of Sciences,
118(16), e2023123118. https://doi.org/10.1073/pnas.2023123118
Sadil, P., Cowell, R., & Huber, D. E. (2021). The push-pull of
serial dependence effects: Attraction to the prior response
and repulsion from the prior stimulus [Preprint].
PsyArXiv. https://doi.org/10.31234/osf.io/f52yz
Samuel, A. G. (1982). Phonetic prototypes. Perception &
Psychophysics, 31(4), 307–314. https://doi.org/10.3758/BF03202653
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M.,
Thoen, E., Elberg, A., & Crowley, J. (2021). GGally: Extension
to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design
analysis: Planning for compelling evidence. Psychonomic
Bulletin & Review, 25(1), 128–142. https://doi.org/10.3758/s13423-017-1230-y
Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini,
M. (2017). Sequential hypothesis testing with Bayes
factors: Efficiently testing mean differences.
Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
Schumann, F. (1914). Bericht über den VI.
Kongreß für experimentelle Psychologie in
Göttingen vom 15. Bis 18. April 1914
[Report on the VI Congress of
Experimental Psychology in
Göttingen from April 15 to 18, 1914].
Schurger, A., Sarigiannidis, I., Naccache, L., Sitt, J. D., &
Dehaene, S. (2015). Cortical activity is more stable when sensory
stimuli are consciously perceived. Proceedings of the National
Academy of Sciences, 112(16), E2083–E2092. https://doi.org/10.1073/pnas.1418730112
Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020).
Psychophysical scaling reveals a unified theory of visual memory
strength. Nature Human Behaviour, 1–17. https://doi.org/10.1038/s41562-020-00938-0
Schwiedrzik, C. M., Ruff, C. C., Lazar, A., Leitner, F. C., Singer, W.,
& Melloni, L. (2014). Untangling perceptual
memory: Hysteresis and adaptation map into separate
cortical networks. Cerebral Cortex, 24(5),
1152–1164. https://doi.org/10.1093/cercor/bhs396
Schwiedrzik, C. M., Sudmann, S. S., Thesen, T., Wang, X., Groppe, D. M.,
Mégevand, P., Doyle, W., Mehta, A. D., Devinsky, O., & Melloni, L.
(2018). Medial prefrontal cortex supports perceptual memory. Current
Biology, 28(18), R1094–R1095. https://doi.org/10.1016/j.cub.2018.07.066
Seamon, J. G., Luo, C. R., Schlegel, S. E., Greene, S. E., &
Goldenberg, A. B. (2000). False memory for categorized pictures and
words: The category associates procedure for studying
memory errors in children and adults. Journal of Memory and
Language, 42(1), 120–146. https://doi.org/10.1006/jmla.1999.2676
Sheehan, T. C., & Serences, J. T. (2023). Distinguishing
response from stimulus driven history biases [Preprint].
bioRxiv. https://doi.org/10.1101/2023.01.11.523637
Shepard, R. (1987). Toward a universal law of generalization for
psychological science. Science, 237(4820), 1317–1323.
https://doi.org/10.1126/science.3629243
Shier, J. (2011). Filling space with random fractal non-overlapping
simple shapes. 10.
Shier, J., & Bourke, P. (2013). An algorithm for random fractal
filling of space: An algorithm for random fractal filling of space.
Computer Graphics Forum, 32(8), 89–97. https://doi.org/10.1111/cgf.12163
Sims, C. R. (2018). Efficient coding explains the universal law of
generalization in human perception. Science,
360(6389), 652–656. https://doi.org/10.1126/science.aaq1118
Smets, G. (1973). Aesthetic judgment and arousal: An experimental
contribution to psycho-aesthetics. Leuven University Press.
Smith, B. (Ed.). (1988). Foundations of Gestalt
theory. Philosophia Verlag.
Snyder, H. K., Rafferty, S. M., Haaf, J. M., & Rouder, J. N. (2019).
Common or distinct attention mechanisms for contrast and assimilation?
Attention, Perception, & Psychophysics, 81(6),
1944–1950. https://doi.org/10.3758/s13414-019-01713-8
Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D., & Melloni, L.
(2015). How previous experience shapes perception in different sensory
modalities. Frontiers in Human Neuroscience, 9, 594.
https://doi.org/10.3389/fnhum.2015.00594
Song, C., Schwarzkopf, D. S., Lutti, A., Li, B., Kanai, R., & Rees,
G. (2013). Effective connectivity within
human primary visual cortex predicts
interindividual diversity in illusory
perception. Journal of Neuroscience, 33(48),
18781–18791. https://doi.org/10.1523/jneurosci.4201-12.2013
Song, C., Schwarzkopf, D. S., & Rees, G. (2013). Variability in
visual cortex size reflects tradeoff between local orientation
sensitivity and global orientation modulation. Nature
Communications, 4(1), 2201. https://doi.org/10.1038/ncomms3201
Sorge, S. (1940). Neue versuche über die wiedergabe abstrakter
optischer gebilde [New experiments on the reproduction
of abstract optical formations]. Archiv für
die gesamte Psychologie, 106,
1–88.
Spehar, B., Walker, N., & Taylor, R. P. (2016). Taxonomy of
individual variations in aesthetic responses to fractal patterns.
Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00350
Spröte, P., Schmidt, F., & Fleming, R. W. (2016). Visual perception
of shape altered by inferred causal history. Scientific
Reports, 6(1), 36245. https://doi.org/10.1038/srep36245
Stadler, M., Stegnano, L., & Trombini, G. (1979). Quantitative
Analyse der Rauschschen Prägnanzaspekte [quantitative analysis
of Rausch’ Prägnanz aspects]. Gestalt
Theory, 1, 28–40.
Stan Development Team. (2020b). StanHeaders: Headers
for the R interface to Stan. https://mc-stan.org/
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016).
Increasing transparency through a multiverse analysis. Perspectives
on Psychological Science, 11(5), 702–712. https://doi.org/10.1177/1745691616658637
Stein, H., Barbosa, J., Rosa-Justicia, M., Prades, L., Morató, A.,
Galan-Gadea, A., Ariño, H., Martinez-Hernandez, E., Castro-Fornieles,
J., Dalmau, J., & Compte, A. (2020). Reduced serial dependence
suggests deficits in synaptic potentiation in anti-NMDAR
encephalitis and schizophrenia. Nature Communications,
11(1), 4250. https://doi.org/10.1038/s41467-020-18033-3
Stevenage, S. V. (1995). Can caricatures really produce distinctiveness
effects? British Journal of Psychology, 86(1),
127–146.
Strother, L., & Kubovy, M. (2006). On the surprising salience of
curvature in grouping by proximity. Journal of Experimental
Psychology: Human Perception and Performance, 32(2),
226–234. https://doi.org/10.1037/0096-1523.32.2.226
Strother, L., & Kubovy, M. (2012). Structural salience and the
nonaccidentality of a Gestalt. Journal of Experimental
Psychology: Human Perception and Performance, 38(4),
827–832. https://doi.org/10.1037/a0027939
Sun, Z., & Firestone, C. (2021). Curious objects: How visual
complexity guides attention and engagement. Cognitive Science,
45(4). https://doi.org/10.1111/cogs.12933
Sundqvist, F. (2003). Perceptual dynamics: Theoretical
foundations and philosophical implications of Gestalt
psychology [PhD thesis]. Göteborg University; Acta Universitatis
Gothoburgensis.
Taubert, J., Alais, D., & Burr, D. (2016). Different coding
strategies for the perception of stable and changeable facial
attributes. Scientific Reports, 6(1), 32239. https://doi.org/10.1038/srep32239
Telenczuk, B. (2021). Svgutils (Version 0.3.4) [Computer
software]. https://svgutils.readthedocs.io
Thomas, B. G. (2012). 15 - Colour symmetry: The systematic
coloration of patterns and tilings. In J. Best (Ed.), Colour
Design (pp. 381–432). Woodhead Publishing. https://doi.org/10.1533/9780857095534.3.381
Tiedemann, F. (2020). Gghalves: Compose half-half plots using your
favourite geoms. https://CRAN.R-project.org/package=gghalves
Tinbergen, N. (1951). The study of instinct. Clarendon
Press.
Tomassini, A., Morgan, M. J., & Solomon, J. A. (2010). Orientation
uncertainty reduces perceived obliquity. Vision Research,
50(5), 541–547. https://doi.org/10.1016/j.visres.2009.12.005
Tversky, A. (1977). Features of similarity. Psychological
Review, 84, 327–352. https://doi.org/10.1037/0033-295X.84.4.327
Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal
is driven by decision uncertainty and alters serial choice bias.
Nature Communications, 8(1), 14637. https://doi.org/10.1038/ncomms14637
Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets,
B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain
worlds: Predictive coding in autism. Psychological
Review, 121(4), 649–675. https://doi.org/10.1037/a0037665
Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art:
A tentative prediction error account of visual art.
I-Perception, 2(9), 1035–1062. https://doi.org/10.1068/i0466aap
van der Helm, P. A. (2000). Simplicity versus likelihood in visual
perception: From surprisals to precisals. Psychological
Bulletin, 126(5), 770–800. https://doi.org/10.1037/0033-2909.126.5.770
van der Helm, P. A. (2017). On Bayesian simplicity in human
visual perceptual organization. Perception, 46(11),
1269–1282. https://doi.org/10.1177/0301006617719604
Van der Hulst, E., Van Geert, E., & Wagemans, J. (in preparation).
Shape variation in proximity grouping: An individual differences
approach.
Van der Hulst, E., van Heusden, E., Wagemans, J., & Moors, P.
(2022). Grouping by proximity and luminance similarity is additive
for everyone: An analysis of individual differences in
grouping sensitivity. Retrieved from osf.io/p845j.
Van Geert, E., Bossens, C., & Wagemans, J. (2022). The
Order & Complexity Toolbox for
Aesthetics (OCTA): A systematic
approach to study the relations between order, complexity, and aesthetic
appreciation. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01900-w
Van Geert, E., Ding, R., & Wagemans, J. (2021). A cross-cultural
comparison of aesthetic preferences for neatly organized compositions:
Native Chinese- vs. native
Dutch-speaking samples [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/679zm
Van Geert, E., Frérart, L., & Wagemans, J. (2022). Towards the
most prägnant Gestalt: Leveling and sharpening
as contextually dependent adaptive strategies [Preprint].
PsyArXiv. https://doi.org/10.31234/osf.io/t3bzw
Van Geert, E., Hofmann, D., & Wagemans, J. (in preparation). The
perception and appreciation of order and complexity.
Van Geert, E., Moors, P., Haaf, J., & Wagemans, J. (2022). Same
stimulus, same temporal context, different percept?
Individual differences in hysteresis and adaptation when
perceiving multistable dot lattices. I-Perception,
13(4), 20416695221109300. https://doi.org/10.1177/20416695221109300
Van Geert, E., & Wagemans, J. (2020). Order, complexity, and
aesthetic appreciation. Psychology of Aesthetics, Creativity, and
the Arts, 14(2), 135–154. https://doi.org/10.1037/aca0000224
Van Geert, E., & Wagemans, J. (2021). Order, complexity, and
aesthetic preferences for neatly organized compositions. Psychology
of Aesthetics, Creativity, and the Arts, 15(3), 484–504.
https://doi.org/10.1037/aca0000276
Van Geert, E., & Wagemans, J. (2022). What good is goodness?
The effects of reference points on discrimination and
categorization of shapes [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/6x75c
Van Geert, E., & Wagemans, J. (2023). Prägnanz in visual
perception [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/pxdg4
Van Geert, E., & Wagemans, J. (in preparation a). Pre-existing
categorization diminishes attractive and repulsive temporal history
effects on perception.
Van Geert, E., & Wagemans, J. (in preparation b). Individual
differences in the use of perceptual history in the visual
categorization of abstract shapes.
Van Geert, E., Warny, A., & Wagemans, J. (in preparation). A
systematic approach to study preferences for complexity.
van Leeuwen, C. (1990). Perceptual-learning systems as conservative
structures: Is economy an attractor? Psychological
Research, 52(2), 145–152. https://doi.org/10.1007/BF00877522
van Lier, R., van der Helm, P., & Leeuwenberg, E. L. J. (1994).
Integrating global and local aspects of visual occlusion.
Perception, 23(8), 883–903. https://doi.org/10.1068/p230883
Van Rossum, G., & Drake Jr, F. L. (1995). Python reference
manual. Centrum voor Wiskunde en Informatica Amsterdam.
Van Rossum, G., & Drake Jr, F. L. (2009). Python 3 reference
manual. CreateSpace.
Vanderplas, J. M., & Garvin, E. A. (1959). Complexity, association
value, and practice as factors in shape recognition following
paired-associates training. Journal of Experimental Psychology,
57(3), 155–163. https://doi.org/10.1037/h0042010
Venables, W. N., & Ripley, B. D. (2002). Modern applied
statistics with s (Fourth). Springer. http://www.stats.ox.ac.uk/pub/MASS4/
vgalin. (2021). html2image (Version
1.1.2) [Computer software]. https://github.com/vgalin/html2image
von Ehrenfels, C. (1916). Höhe und
Reinheit der Gestalt [Height
and purity of Gestalt]. In Kosmogonie
[Cosmogony] (pp. 93–96). Diederichs.
von Ehrenfels, C. (1922). Das Primzahlengesetz,
entwickelt und dargestellt auf Grund der Gestalttheorie
[The prime number law, developed and presented on the basis
of the Gestalt theory]. O. R. Reisland.
von Ehrenfels, C. (1937). Über Gestaltqualitäten
(1932) [On Gestalt qualities].
Philosophia (Belgrad), 2, 139–141. (Original work
published 1932)
Wagemans, J. (1992). Perceptual use of nonaccidental properties.
Canadian Journal of Psychology/Revue Canadienne de Psychologie,
46(2), 236–279. https://doi.org/10.1037/h0084323
Wagemans, J. (2015). Historical and conceptual background:
Gestalt theory. In J. Wagemans (Ed.), The Oxford Handbook of Perceptual Organization.
Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199686858.013.026
Wagemans, J. (2018). Perceptual organization. In The Stevens’ Handbook of Experimental
Psychology and Cognitive Neuroscience: Vol. 2. Sensation, Perception
& Attention (pp. 803–872). John Wiley & Sons, Inc.
https://doi.org/https://doi.org/10.1002/9781119170174.epcn218
Wagemans, J., Bossche, P. V., Segers, N., & d’Ydewalle, G. (1994).
An affine group model and the perception of orthographically projected
planar random polygons. Journal of Mathematical Psychology,
38(1), 59–72. https://doi.org/10.1006/jmps.1994.1003
Wagemans, J., Claessens, P. M. E., & Moors, P. (2018).
Perceptual grouping in dot lattices revisited [41st European
Conference on Visual Perception (ECVP)]. Abstract published in
Perception, 48(S1) (Supplement). https://doi.org/10.1177/0301006618824879
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A.,
Singh, M., & Heydt, R. von der. (2012). A century of
Gestalt psychology in visual perception: I.
Perceptual grouping and figure–ground organization.
Psychological Bulletin, 138(6), 1172–1217. https://doi.org/10.1037/a0029333
Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R.,
van der Helm, P. A., & van Leeuwen, C. (2012). A century of
Gestalt psychology in visual perception: II.
Conceptual and theoretical foundations. Psychological
Bulletin, 138(6), 1218–1252. https://doi.org/10.1037/a0029334
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R.
(2010). Bayesian hypothesis testing for psychologists: A
tutorial on the Savage method. Cognitive
Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001
Wei, X.-X., & Stocker, A. A. (2015). A Bayesian
observer model constrained by efficient coding can explain
’anti-Bayesian’ percepts. Nature Neuroscience,
18(10), 1509–1517. https://doi.org/10.1038/nn.4105
Wei, X.-X., & Stocker, A. A. (2017). Lawful relation between
perceptual bias and discriminability. Proceedings of the National
Academy of Sciences, 114(38), 10244–10249. https://doi.org/10.1073/pnas.1619153114
Wellek, A. (1959). Das Prägnanzproblem der
Gestaltpsychologie und das "Exemplarische" in
der Pädagogik [The problem of
Prägnanz in Gestalt psychology and the
"exemplary" in pedagogy]. Zeitschrift für
experimentelle und angewandte
Psychologie, 6, 722–736.
Wertheimer, M. (1912). Über das Denken der
Naturvölker. I. Zahlen und
Zahlgebilde [About the thinking of people
who live close to nature. I. Numbers and
number formations.]. Zeitschrift für Psychologie,
60, 321–378.
Wertheimer, M. (1922). Untersuchungen zur Lehre von der
Gestalt. I. Prinzipielle Bemerkungen
[Investigations into the teachings of Gestalt.
I. Remarks on its principles].
Psychologische Forschung, 1, 47–58. https://doi.org/10.1007/BF00410385
Wertheimer, M. (1923). Untersuchungen zur Lehre von der
Gestalt. II [Investigations
into the teachings of Gestalt. II.
Psychological research]. Psychologische Forschung,
4, 301–350. https://doi.org/10.1007/BF00410640
Wertheimer, M. (1959). Productive thinking.
Harper.
Wertheimer, M. (1999). Gestalt theory. Gestalt
Theory, 21, 181–183. (Original work published 1924)
Wertheimer, M., Spillmann, L., Sarris, V., & Sekuler, R. (2012).
On perceived motion and figural organization. MIT
Press.
Westphal-Fitch, G., Huber, L., Gómez, J. C., & Fitch, W. T. (2012).
Production and perception rules underlying visual patterns: Effects of
symmetry and hierarchy. Philosophical Transactions of the Royal
Society B: Biological Sciences, 367(1598), 2007–2022. https://doi.org/10.1098/rstb.2012.0098
Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in
vision break universality and time invariance. Proceedings of the
National Academy of Sciences, 112(48), 14990–14995. https://doi.org/10.1073/pnas.1508847112
Wickham, H. (2016). ggplot2: Elegant graphics for data
analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2019). Stringr: Simple, consistent wrappers for common
string operations. https://CRAN.R-project.org/package=stringr
Wickham, H. (2022a). Forcats: Tools for working with categorical
variables (factors). https://CRAN.R-project.org/package=forcats
Wickham, H. (2022b). Modelr: Modelling functions that work with the
pipe. https://CRAN.R-project.org/package=modelr
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D.,
François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,
Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J.,
Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to
the tidyverse. Journal of Open Source
Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., & Bryan, J. (2022). Readxl: Read excel files.
https://CRAN.R-project.org/package=readxl
Wickham, H., Bryan, J., & Barrett, M. (2021). Usethis: Automate
package and project setup. https://CRAN.R-project.org/package=usethis
Wickham, H., François, R., Henry, L., & Müller, K. (2022).
Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., & Girlich, M. (2022). Tidyr: Tidy messy data.
https://CRAN.R-project.org/package=tidyr
Wickham, H., Hester, J., & Bryan, J. (2022). Readr: Read
rectangular text data. https://CRAN.R-project.org/package=readr
Wickham, H., Hester, J., Chang, W., & Bryan, J. (2021).
Devtools: Tools to make developing r packages easier. https://CRAN.R-project.org/package=devtools
Wilhelm, S., & G, M. B. (2022). tmvtnorm: Truncated multivariate normal and
student t distribution. https://CRAN.R-project.org/package=tmvtnorm
Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot
annotations for ’ggplot2’. https://CRAN.R-project.org/package=cowplot
Wilson, A., & Chatterjee, A. (2005). The assessment of preference
for balance: Introducing a new test. Empirical Studies of the
Arts, 23(2), 165–180. https://doi.org/10.2190/B1LR-MVF3-F36X-XR64
Wohlfahrt, E. (1932). Der Auffassungsvorgang an kleinen
Gestalten; Ein Beitrag zur
Psychologie des Vorgestaltserlebnisses
[the perceptual process of small figures; A contribution to
the psychology of pre-Gestalt experience. Neue
Psychologische Studien, 4, 347–414.
Wulf, F. (1922). Beiträge zur Psychologie der Gestalt. VI. Über die
Veränderung yon Vorstellungen (Gedächtnis und Gestalt)
[Contributions to the Psychology of Gestalt.
VI. On the change of ideas (Memory and
Gestalt)]. Psychologische Forschung,
1(1), 333–373. https://doi.org/10.1007/BF00410394
Xie, Y. (2015). Dynamic documents with R and knitr
(2nd ed.). Chapman; Hall/CRC. https://yihui.org/knitr/
Yang, J., & Fan, J. (2021). Visual communication of object concepts
at different levels of abstraction. Journal of Vision,
21(9), 2951. https://doi.org/10.1167/jov.21.9.2951
Yu, G. (2022). Ggimage: Use image in ’ggplot2’. https://CRAN.R-project.org/package=ggimage
Zeileis, A. (2004). Econometric computing with HC and
HAC covariance matrix estimators. Journal of
Statistical Software, 11(10), 1–17. https://doi.org/10.18637/jss.v011.i10
Zeileis, A. (2006). Object-oriented computation of sandwich estimators.
Journal of Statistical Software, 16(9), 1–16. https://doi.org/10.18637/jss.v016.i09
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile
variances: An object-oriented implementation of clustered covariances in
R. Journal of Statistical Software,
95(1), 1–36. https://doi.org/10.18637/jss.v095.i01
Zhang, H., & Alais, D. (2020). Individual difference in serial
dependence results from opposite influences of perceptual choices and
motor responses. Journal of Vision, 20(8), 2. https://doi.org/10.1167/jov.20.8.2
Zhu, H. (2021). kableExtra: Construct complex table with ’kable’ and
pipe syntax. https://CRAN.R-project.org/package=kableExtra
Zimmer, A. C. (1991). The complementarity of singularity and stability.
A comment on Kanizsa & Luccio’s "Analysis of the
concept of Prägnanz" (1986). Gestalt Theory,
13(4), 276–282.