References

Abrahamyan, A., Silva, L. L., Dakin, S. C., Carandini, M., & Gardner, J. L. (2016). Adaptable history biases in human perceptual decisions. Proceedings of the National Academy of Sciences, 113(25), E3548–E3557. https://doi.org/10.1073/pnas.1518786113
Acker, B. E., Pastore, R. E., & Hall, M. D. (1995). Within-category discrimination of musical chords: Perceptual magnet or anchor? Perception & Psychophysics, 57(6), 863–874. https://doi.org/10.3758/bf03206801
Aguilar, D. (2021). Jsonpickle (Version 2.0.0) [Computer software]. https://github.com/jsonpickle/jsonpickle
Allaire, J., Ushey, K., Tang, Y., & Eddelbuettel, D. (2017). Reticulate: R interface to Python. https://github.com/rstudio/reticulate
Allport, G. W. (1930). Change and decay in the visual memory image. British Journal of Psychology, 21(2), 133–148. https://doi.org/10.1111/j.2044-8295.1930.tb00581.x
Alp, N., Kohler, P. J., Kogo, N., Wagemans, J., & Norcia, A. M. (2018). Measuring integration processes in visual symmetry with frequency-tagged EEG. Scientific Reports, 8(1), 6969. https://doi.org/10.1038/s41598-018-24513-w
Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392–398. https://doi.org/10.1111/j.1467-9280.2008.02098.x
Alvarez, L., Gousseau, Y., Morel, J.-M., & Salgado, A. (2015). Exploring the space of abstract textures by principles and random sampling. Journal of Mathematical Imaging and Vision, 53(3), 332–345. https://doi.org/10.1007/s10851-015-0582-z
Alvarez, L., Monzón, N., & Morel, J.-M. (2021). Interactive design of random aesthetic abstract textures by composition principles. Leonardo, 54(2), 179–184. https://doi.org/10.1162/leon_a_01768
Analytics, R., & Weston, S. (2020). Iterators: Provides iterator construct. https://CRAN.R-project.org/package=iterators
Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The "oblique effect" in man and animals. Psychological Bulletin, 78(4), 266–278. https://doi.org/10.1037/h0033117
Archambault, A., O’Donnell, C., & Schyns, P. G. (1999). Blind to object changes: When learning the same object at different levels of categorization modifies its perception. Psychological Science, 10(3), 249–255. https://doi.org/10.1111/1467-9280.00145
Arnheim, R. (1971). Entropy and art: An essay on disorder and order. University of California Press. https://books.google.be/books?id=gpTpAAAAMAAJ
Arnheim, R. (1974). Art and visual perception. University of California Press.
Arnheim, R. (1975). Anwendungen gestalttheoretischer Prinzipien auf die Kunst [Applications of Gestalt theoretical principles to art]. In S. Ertel, L. Kemmler, & M. Stadler (Eds.), Gestalttheorie in der modernen Psychologie [Gestalt theory in modern psychology] (pp. 278–284). Steinkopff. https://doi.org/10.1007/978-3-642-72312-4_28
Arnheim, R. (1986). The two faces of Gestalt psychology. American Psychologist, 41(7), 820–824. https://doi.org/10.1037/0003-066X.41.7.820
Arnheim, R. (1987). Prägnanz and its discontents. Gestalt Theory, 9(2), 102–107.
Arnold, J. B. (2021). Ggthemes: Extra themes, scales and geoms for ’ggplot2’. https://CRAN.R-project.org/package=ggthemes
Arnoult, M. D. (1960). Prediction of perceptual responses from structural characteristics of the stimulus. Perceptual and Motor Skills, 11(3), 261–268. https://doi.org/10.2466/pms.1960.11.3.261
Ash, M. G. (1995). Gestalt psychology in German culture, 1890–1967: Holism and the quest for objectivity. Cambridge University Press.
Ashourian, P., & Loewenstein, Y. (2011). Bayesian inference underlies the contraction bias in delayed comparison tasks. PLoS ONE, 6(5), e19551. https://doi.org/10.1371/journal.pone.0019551
Attneave, F. (1955). Symmetry, information, and memory for patterns. The American Journal of Psychology, 68(2), 209–222. https://doi.org/10.2307/1418892
Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61(3), 183–193. https://doi.org/10.1037/h0054663
Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53(4), 221–227. https://doi.org/10.1037/h0043921
Attneave, F., & Arnoult, M. D. (1956). The quantitative study of shape and pattern perception. Psychological Bulletin, 53(6), 452–471. https://doi.org/10.1037/h0044049
Aust, F., & Barth, M. (2022). papaja: Prepare reproducible APA journal articles with R Markdown. https://github.com/crsh/papaja
Barth, M. (2022). tinylabels: Lightweight variable labels. https://cran.r-project.org/package=tinylabels
Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge University Press.
Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense matrix classes and methods. https://CRAN.R-project.org/package=Matrix
Berlyne, D. E. (Ed.). (1960). Conflict, arousal and curiosity. McGraw-Hill. https://doi.org/10.1037/11164-000
Berlyne, D. E. (Ed.). (1974). Studies in the new experimental aesthetics: Steps toward an objective psychology of aesthetic appreciation. Hemisphere.
Bertamini, M., & Rampone, G. (2020). The study of symmetry in empirical aesthetics. In M. Nadal & O. Vartanian (Eds.), The Oxford Handbook of Empirical Aesthetics. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198824350.013.23
Best, R. M., & Goldstone, R. L. (2019). Bias to (and away from) the extreme: Comparing two models of categorical perception effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(7), 1166–1176. https://doi.org/10.1037/xlm0000609
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2), 115–147. https://doi.org/10.1037/0033-295X.94.2.115
Bies, A. J., Blanc-Goldhammer, D. R., Boydston, C. R., Taylor, R. P., & Sereno, M. E. (2016). Aesthetic responses to exact fractals driven by physical complexity. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00210
Bischof, N. (1966). Erkenntnistheoretische Grundlagenprobleme der Wahrnemungspsychologie [Basic epistemological problems of the psychology of perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.), Allgemeine Psychologie [General psychology]. Hogrefe.
Blake, A. B., Nazarian, M., & Castel, A. D. (2015). The Apple of the mind’s eye: Everyday attention, metamemory, and reconstructive memory for the Apple logo. The Quarterly Journal of Experimental Psychology, 68(5), 858–865. https://doi.org/10.1080/17470218.2014.1002798
Bock, H., & Pfeiffer, T. (1987). Prototypikalität von Bedeutungsvarianten des Verbs "überholen" im Lichte der gestalttheoretischen Bezugssystemlehre [Prototypicality of meaning variants of the verb "to overtake" in the light of Gestalt theoretical frame of reference theory]. Gestalt Theory, 9(1), 3–16.
Boeykens, C., Wagemans, J., & Moors, P. (2021). Perception of the ambiguous motion quartet: A stimulus-observer interaction approach. Journal of Vision, 21(13), 12. https://doi.org/10.1167/jov.21.13.12
Bosch, E., Fritsche, M., Ehinger, B. V., & de Lange, F. P. (2020). Opposite effects of choice history and evidence history resolve a paradox of sequential choice bias. Journal of Vision, 20(12), 9–9. https://doi.org/10.1167/jov.20.12.9
Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384–392. https://doi.org/10.1177/0956797610397956
Brascamp, J. W., Knapen, T. H. J., Kanai, R., Noest, A. J., van Ee, R., & van den Berg, A. V. (2008). Multi-timescale perceptual history resolves visual ambiguity. PLOS ONE, 3(1), e1497. https://doi.org/10.1371/journal.pone.0001497
Braun, J., Amirshahi, S. A., Denzler, J., & Redies, C. (2013). Statistical image properties of print advertisements, visual artworks and images of architecture. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00808
Brewer, W. F., & Treyens, J. C. (1981). Role of schemata in memory for places. Cognitive Psychology, 13(2), 207–230. https://doi.org/10.1016/0010-0285(81)90008-6
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28. https://doi.org/10.18637/jss.v080.i01
Bürkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms. The R Journal, 10(1), 395–411. https://doi.org/10.32614/RJ-2018-017
Bürkner, P.-C. (2021). Bayesian item response modeling in R with brms and Stan. Journal of Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05
Burnett, H. G., & Jellema, T. (2013). (Re-)conceptualisation in Asperger’s syndrome and typical individuals with varying degrees of autistic-like traits. Journal of Autism and Developmental Disorders, 43(1), 211–223. https://doi.org/10.1007/s10803-012-1567-z
Caddigan, E., Choo, H., Fei-Fei, L., & Beck, D. M. (2017). Categorization influences detection: A perceptual advantage for representative exemplars of natural scene categories. Journal of Vision, 17(1), 21. https://doi.org/10.1167/17.1.21
Campitelli, E. (2022). Ggnewscale: Multiple fill and colour scales in ’ggplot2’. https://CRAN.R-project.org/package=ggnewscale
Carmichael, L., Hogan, H. P., & Walter, A. A. (1932). An experimental study of the effect of language on the reproduction of visually perceived form. Journal of Experimental Psychology, 15(1), 73–86. https://doi.org/10.1037/h0072671
Carter, O., Snyder, J. S., Fung, S., & Rubin, N. (2014). Using ambiguous plaid stimuli to investigate the influence of immediate prior experience on perception. Attention, Perception, & Psychophysics, 76(1), 133–147. https://doi.org/10.3758/s13414-013-0547-5
Chamberlain, R., & Wagemans, J. (2016). The genesis of errors in drawing. Neuroscience & Biobehavioral Reviews, 65, 195–207. https://doi.org/10.1016/j.neubiorev.2016.04.002
Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual organization. Psychological Review, 103(3), 566–581.
Chaussé, P. (2010). Computing generalized method of moments and generalized empirical likelihood with R. Journal of Statistical Software, 34(11), 1–35. https://doi.org/10.18637/jss.v034.i11
Checkosky, S. F., & Whitlock, D. (1973). Effects of pattern goodness on recognition time in a memory search task. Journal of Experimental Psychology, 100(2), 341–348. https://doi.org/10.1037/h0035692
Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., & Allen, J. (2021). Htmltools: Tools for HTML. https://CRAN.R-project.org/package=htmltools
Chetverikov, A., & Kristjánsson, Á. (2016). On the joys of perceiving: Affect as feedback for perceptual predictions. Acta Psychologica, 169, 1–10. https://doi.org/10.1016/j.actpsy.2016.05.005
Chipman, S. F. (1977). Complexity and structure in visual patterns. Journal of Experimental Psychology: General, 106(3), 296–301.
Chipman, S. F., & Mendelson, M. J. (1979). Influence of six types of visual structure on complexity judgments in children and adults. Journal of Experimental Psychology: Human Perception and Performance, 5(2), 365–378.
Cicchini, G. M., Mikellidou, K., & Burr, D. (2017). Serial dependencies act directly on perception. Journal of Vision, 17(14), 6. https://doi.org/10.1167/17.14.6
Claessens, P. M. E., & Wagemans, J. (2008). A Bayesian framework for cue integration in multistable grouping: Proximity, collinearity, and orientation priors in zigzag lattices. Journal of Vision, 8(7), 33. https://doi.org/10.1167/8.7.33
Clarke, A. D. F., Green, P. R., Halley, F., & Chantler, M. J. (2011). Similar symmetries: The role of wallpaper groups in perceptual texture similarity. Symmetry, 3(2), 246–264. https://doi.org/10.3390/sym3020246
Clement, D. E. (1964). Uncertainty and latency of verbal naming responses as correlates of pattern goodness. Journal of Verbal Learning and Verbal Behavior, 3(2), 150–157. https://doi.org/10.1016/S0022-5371(64)80033-5
Clement, D. E., & Varnadoe, K. W. (1967). Pattern uncertainty and the discrimination of visual patterns. Perception & Psychophysics, 2(9), 427–431. https://doi.org/10.3758/BF03208782
Cohen, D. J. (2005). Look little, look often: The influence of gaze frequency on drawing accuracy. Perception & Psychophysics, 67(6), 997–1009. https://doi.org/10.3758/BF03193626
Cohen, D. J., & Bennett, S. (1997). Why can’t most people draw what they see? Journal of Experimental Psychology. Human Perception and Performance, 23(3), 609–621. https://doi.org/10.1037//0096-1523.23.3.609
Coppola, D. M., Purves, H. R., McCoy, A. N., & Purves, D. (1998). The distribution of oriented contours in the real world. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 4002–4006. https://doi.org/10.1073/pnas.95.7.4002
Corbett, J. E., Utochkin, I., & Hochstein, S. (2023). The pervasiveness of ensemble perception: Not just your average review. Elements in Perception. https://doi.org/10.1017/9781009222716
Corporation, M., & Weston, S. (2020). doParallel: Foreach parallel adaptor for the ’parallel’ package. https://CRAN.R-project.org/package=doParallel
Cupchik, G. C., & Berlyne, D. E. (1979). The perception of collative properties in visual stimuli. Scandinavian Journal of Psychology, 20(1), 93–104. https://doi.org/10.1111/j.1467-9450.1979.tb00688.x
Curray, J. R. (1956). The analysis of two-dimensional orientation data. The Journal of Geology, 64(2), 117–131.
de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a web browser. Behavior Research Methods, 47(1), 1–12. https://doi.org/10.3758/s13428-014-0458-y
Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132(1), 73–97. https://doi.org/10.1037/0033-2909.132.1.73
Dunn, J. C. (1983). Spatial metrics of integral and separable dimensions. Journal of Experimental Psychology, 9(2), 242–257. https://doi.org/10.1037/0096-1523.9.2.242
Eddelbuettel, D., & Balamuta, J. J. (2018). Extending extitR with extitC++: A Brief Introduction to extitRcpp. The American Statistician, 72(1), 28–36. https://doi.org/10.1080/00031305.2017.1375990
Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8), 1–18. https://doi.org/10.18637/jss.v040.i08
Ellis, W. D. (1938). A source book of Gestalt psychology. Routledge & Kegan Paul.
Eysenck, H. J. (1942). The experimental study of the ’good Gestalt’–a new approach. Psychological Review, 49(4), 344–364. https://doi.org/10.1037/h0057013
Fan, J. E., Hawkins, R. D., Wu, M., & Goodman, N. D. (2020). Pragmatic inference and visual abstraction enable contextual flexibility during visual communication. Computational Brain & Behavior, 3(1), 86–101. https://doi.org/10.1007/s42113-019-00058-7
Fan, J. E., Yamins, D. L. K., & Turk-Browne, N. B. (2018). Common object representations for visual production and recognition. Cognitive Science, 42(8), 2670–2698. https://doi.org/10.1111/cogs.12676
Fechner, G. T. (1860). Elemente der Psychophysik [Elements of psychophysics]. Leipzig: Breitkopf und Härtel.
Fehrer, E. V. (1935). An investigation of the learning of visually perceived forms. The American Journal of Psychology, 47(2), 187–221. https://doi.org/10.2307/1415826
Feldman, J. (2003). What is a visual object? Trends in Cognitive Sciences, 7(6), 252–256. https://doi.org/10.1016/S1364-6613(03)00111-6
Feldman, J. (2000). Bias toward regular form in mental shape spaces. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 152–165. https://doi.org/10.1037/0096-1523.26.1.152
Feldman, J. (2021). Mutual information and categorical perception. Psychological Science, 32(8), 1298–1310. https://doi.org/10.1177/0956797621996663
Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116(4), 752–782. https://doi.org/10.1037/a0017196
Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology: CB, 27(4), 590–595. https://doi.org/10.1016/j.cub.2017.01.006
Fritsche, M., Spaak, E., & de Lange, F. P. (2020). A Bayesian and efficient observer model explains concurrent attractive and repulsive history biases in visual perception. eLife, 9, e55389. https://doi.org/10.7554/eLife.55389
Froyen, V., Feldman, J., & Singh, M. (2015). Bayesian hierarchical grouping: Perceptual grouping as mixture estimation. Psychological Review, 122(4), 575–597. https://doi.org/10.1037/a0039540
Gallagher, G. K., & Benton, C. P. (2022). Stimulus uncertainty predicts serial dependence in orientation judgements. Journal of Vision, 22(1), 6. https://doi.org/10.1167/jov.22.1.6
Garner, W. R. (1974). The processing of information and structure. Erlbaum.
Garner, W. R., & Clement, D. E. (1963). Goodness of pattern and pattern uncertainty. Journal of Verbal Learning and Verbal Behavior, 2(5-6), 446–452. https://doi.org/10.1016/S0022-5371(63)80046-8
Gartus, A., & Leder, H. (2013). The small step toward asymmetry: Aesthetic judgment of broken symmetries. I-Perception, 4(5), 361–364. https://doi.org/10.1068/i0588sas
Gati, I., & Tversky, A. (1982). Representations of qualitative and quantitative dimensions. Journal of Experimental Psychology: Human Perception and Performance, 8(2), 325–340. https://doi.org/10.1037//0096-1523.8.2.325
Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities. Springer-Verlag.
Gepshtein, S., & Kubovy, M. (2005). Stability and change in perception: Spatial organization in temporal context. Experimental Brain Research, 160(4), 487–495. https://doi.org/10.1007/s00221-004-2038-3
Gherman, D. (2021). Svglib (Version 1.1.0) [Computer software]. https://github.com/deeplook/svglib
Gibson, J. J. (1929). The reproduction of visually perceived forms. Journal of Experimental Psychology, 12(1), 1–39. https://doi.org/10.1037/h0072470
Gillebert, C. R., Op de Beeck, H. P., & Wagemans, J. (2009). The influence of categorisation on the perceived shape similarity of everyday objects. Psychologica Belgica, 48(4), 261. https://doi.org/10.5334/pb-48-4-261
Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 14(7), 926–932. https://doi.org/10.1038/nn.2831
Glanzer, M., & Clark, W. H. (1963). Accuracy of perceptual recall: An analysis of organization. Journal of Verbal Learning & Verbal Behavior, 1, 289–299. https://doi.org/10.1016/S0022-5371(63)80008-0
Goetschalckx, L., Moors, P., Vanmarcke, S., & Wagemans, J. (2019). Get the Picture? Goodness of Image Organization Contributes to Image Memorability. Journal of Cognition, 2(1), 22. https://doi.org/10.5334/joc.80
Gohel, D., & Skintzos, P. (2021). Ggiraph: Make ’ggplot2’ graphics interactive. https://CRAN.R-project.org/package=ggiraph
Goldmeier, E. (1937). Über Ähnlichkeit bei gesehenen Figuren [About similarity in seen figures]. Psychologische Forschung, 21, 146–208.
Goldmeier, E. (1972). Similarity in visually perceived forms. Psychological Issues, 8(1).
Goldmeier, E. (1982). The memory trace: Its formation and its fate. Erlbaum.
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 69–78. https://doi.org/10.1002/wcs.26
Gollwitzer, A., Marshall, J., Wang, Y., & Bargh, J. A. (2017). Relating pattern deviancy aversion to stigma and prejudice. Nature Human Behaviour, 1(12), 920–927. https://doi.org/10.1038/s41562-017-0243-x
Graf, L. K. M., & Landwehr, J. R. (2015). A dual-process perspective on fluency-based aesthetics: The Pleasure-Interest Model of Aesthetic Liking. Personality and Social Psychology Review, 19(4), 395–410. https://doi.org/10.1177/1088868315574978
Graf, L. K. M., & Landwehr, J. R. (2017). Aesthetic pleasure versus aesthetic interest: The two routes to aesthetic liking. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.00015
Granit, A. R. (1922). A study on the perception of form. British Journal of Psychology. General Section, 12(3), 223–247. https://doi.org/10.1111/j.2044-8295.1922.tb00055.x
Grebenkina, M., Brachmann, A., Bertamini, M., Kaduhm, A., & Redies, C. (2018). Edge-orientation entropy predicts preference for diverse types of man-made images. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00678
Grinband, J., Hirsch, J., & Ferrera, V. P. (2006). A neural representation of categorization uncertainty in the human brain. Neuron, 49(5), 757–763. https://doi.org/10.1016/j.neuron.2006.01.032
Grolemund, G., & Wickham, H. (2011). Dates and times made easy with lubridate. Journal of Statistical Software, 40(3), 1–25. https://www.jstatsoft.org/v40/i03/
Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.-J., & Steingroever, H. (2017). A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80–97. https://doi.org/10.1016/j.jmp.2017.09.005
Grünbaum, B., & Shephard, G. C. (1989). Tilings and patterns. W. H. Freeman; company.
Güçlütürk, Y., Jacobs, R. H. A. H., & van Lier, R. (2016). Liking versus complexity: Decomposing the inverted u-curve. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00112
Haaf, J. M., & Rouder, J. N. (2019). Some do and some don’t? Accounting for variability of individual difference structures. Psychonomic Bulletin & Review, 26(3), 772–789. https://doi.org/10.3758/s13423-018-1522-x
Hahn, M., & Wei, X.-X. (2022). A unifying theory explains seemingly contradicting biases in perceptual estimation [Preprint]. bioRxiv. https://doi.org/10.1101/2022.12.12.519538
Hamada, J., & Ishihara, T. (1988). Complexity and goodness of dot patterns varying in symmetry. Psychological Research, 50(3), 155–161. https://doi.org/10.1007/BF00310176
Hammad, S., Juricevic, I., Rajani, S., & Kennedy, J. (2008). Angle illusion on a picture’s surface. Spatial Vision, 21(3-5), 451–462. https://doi.org/10.1163/156856808784532554
Hanley, J. R., & Roberson, D. (2011). Categorical perception effects reflect differences in typicality on within-category trials. Psychonomic Bulletin & Review, 18(2), 355–363. https://doi.org/10.3758/s13423-010-0043-z
Harnad, S. (1987). Psychophysical and cognitive aspects of categorical perception: A critical overview. In Categorical perception: The groundwork of cognition. Cambridge University Press.
Harnad, S. (2003). Categorical perception. Encyclopedia of Cognitive Science.
Hartendorp, M. O., Van der Stigchel, S., Burnett, H. G., Jellema, T., Eilers, P. H. C., & Postma, A. (2010). Categorical perception of morphed objects using a free-naming experiment. Visual Cognition, 18(9), 1320–1347. https://doi.org/10.1080/13506285.2010.482774
Hellström, Å. (2007). Temporal asymmetry and "magnet effect"" in similarity and discrimination of prototypical and nonprototypical stimuli: Consequences of differential sensation weighting. Fechner Day 2007: Proceedings of the 23rd Annual Meeting of the International Society for Psychophysics, 283–288.
Hendrickx, M., & Wagemans, J. (1999). A critique of Leyton’s theory of perception and cognition. Review of Symmetry, Causality, Mind, by Michael Leyton. Journal of Mathematical Psychology, 43(2), 314–345. https://doi.org/10.1006/jmps.1998.1232
Henle, M. (1987). On breaking out of dichotomies. Gestalt Theory, 9(3/4), 140–149.
Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools. https://CRAN.R-project.org/package=purrr
Henry, L., Wickham, H., & Chang, W. (2020). Ggstance: Horizontal ’ggplot2’ components. https://CRAN.R-project.org/package=ggstance
Hester, J., & Bryan, J. (2022). Glue: Interpreted string literals. https://CRAN.R-project.org/package=glue
Hochberg, J. (2003). Acts of perceptual inquiry: Problems for any stimulus-based simplicity theory. Acta Psychologica, 114(3), 215–228. https://doi.org/10.1016/j.actpsy.2003.07.002
Hochberg, J. (1968). Perception. Prentice Hall.
Hochberg, J., & McAlister, E. (1953). A quantitative approach, to figural "goodness". Journal of Experimental Psychology, 46(5), 361–364. https://doi.org/10.1037/h0055809
Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791–804. https://doi.org/10.1016/S0896-6273(02)01091-7
Hoffman, D. D. (2009). The interface theory of perception: Natural selection drives true perception to swift extinction. In S. J. Dickinson, A. Leonardis, B. Schiele, & M. J. Tarr (Eds.), Object Categorization (pp. 148–166). Cambridge University Press. https://doi.org/10.1017/CBO9780511635465.009
Hoffman, D. D., Singh, M., & Prakash, C. (2015). The interface theory of perception. Psychonomic Bulletin & Review, 22(6), 1480–1506. https://doi.org/10.3758/s13423-015-0890-8
Holzman, P. S., & Gardner, R. W. (1960). Leveling-sharpening and memory organization. Journal of Abnormal and Social Psychology, 61(2), 176–180. https://doi.org/10.1037/h0041295
Hout, M. C., & Goldinger, S. D. (2015). Target templates: The precision of mental representations affects attentional guidance and decision-making in visual search. Attention, Perception, & Psychophysics, 77(1), 128–149. https://doi.org/10.3758/s13414-014-0764-6
Huang, L. (2015). Visual features: Featural strength and visual strength are two dissociable dimensions. Scientific Reports, 5(1), 13769. https://doi.org/10.1038/srep13769
Huang, L. (2022). FVS 2.0: A unifying framework for understanding the factors of visual-attentional processing. Psychological Review, 129(4), 696–731. https://doi.org/10.1037/rev0000314
Hubbell, M. B. (1940). Configurational properties consideredgood’ by naive subjects. The American Journal of Psychology, 53(1), 46. https://doi.org/10.2307/1415960
Hübner, R., & Fillinger, M. G. (2016). Comparison of objective measures for predicting perceptual balance and visual aesthetic preference. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00335
Hüppe, A. (1984). Prägnanz - ein gestalttheoretischer Grundbegriff: Experimentelle Untersuchungen [Prägnanz - a basic concept in gestalt theory: Experimental investigations]. Profil-Verlag.
Irwin, D. E., & Pachella, R. G. (1985). Effects of stimulus probability and visual similarity on stimulus encoding. The American Journal of Psychology, 98(1), 85. https://doi.org/10.2307/1422769
Jacobsen, T., & Höfel, L. (2002). Aesthetic judgments of novel graphic patterns: Analyses of individual judgments. Perceptual and Motor Skills, 95(3), 755–766. https://doi.org/10.2466/pms.2002.95.3.755
Jäkel, F., Singh, M., Wichmann, F. A., & Herzog, M. H. (2016). An overview of quantitative approaches in Gestalt perception. Vision Research, 126, 3–8. https://doi.org/10.1016/j.visres.2016.06.004
Jastrow, J. (1899). The mind’s eye. Popular Science Monthly, 54, 299–312.
Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242. https://doi.org/10.1038/nrn3000
Kanizsa, G. (1975). "Pragnanz" as an obstacle to problem-solving. Giornale Italiano Di Psicologia, 2, 417–425.
Kanizsa, G. (1979). Organization in vision: Essays on Gestalt perception. Praeger.
Kanizsa, G., & Luccio, R. (1986). Die Doppeldeutigkeiten der Prägnanz [The ambiguities of Prägnanz]. Gestalt Theory, 8, 99–135.
Kay, M. (2021a). ggdist: Visualizations of distributions and uncertainty. https://doi.org/10.5281/zenodo.3879620
Kay, M. (2021b). tidybayes: Tidy data and geoms for Bayesian models. https://doi.org/10.5281/zenodo.1308151
Kayaert, G., Op de Beeck, H. P., & Wagemans, J. (2011). Dynamic prototypicality effects in visual search. Journal of Experimental Psychology. General, 140(3), 506–519. https://doi.org/10.1037/a0023494
Kennedy, G. J., Orbach, H. S., & Loffler, G. (2008). Global shape versus local feature: An angle illusion. Vision Research, 48(11), 1281–1289. https://doi.org/10.1016/j.visres.2008.03.003
Khayat, N., & Hochstein, S. (2019). Relating categorization to set summary statistics perception. Attention, Perception, & Psychophysics. https://doi.org/10.3758/s13414-019-01792-7
Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017). Serial dependence across perception, attention, and memory. Trends in Cognitive Sciences, 21(7), 493–497. https://doi.org/10.1016/j.tics.2017.04.011
Koenderink, J. (2014). The All Seeing Eye? Perception, 43(1), 1–6. https://doi.org/10.1068/p4301ed
Koenderink, J. (2015). Esse est percipi & verum factum est. Psychonomic Bulletin & Review, 22(6), 1530–1534. https://doi.org/10.3758/s13423-014-0754-7
Koenderink, J. (2019). Vision, an optical user interface. Perception, 0301006619853758. https://doi.org/10.1177/0301006619853758
Koenderink, J., van Doorn, A., & Pinna, B. (2018). Measures of Prägnanz? Gestalt Theory, 40, 7–28. https://doi.org/10.2478/gth-2018-0002
Koffka, K. (1935). Principles of Gestalt psychology. Harcourt, Brace.
Koffka, K. (1940). Problems in the psychology of art. In R. Bernheimer (Ed.), Art: A Bryn Mawr symposium (pp. 180–273). New York: Oriole Editions.
Kohler, P. J., Clarke, A., Yakovleva, A., Liu, Y., & Norcia, A. M. (2016). Representation of maximally regular textures in human visual cortex. The Journal of Neuroscience, 36(3), 714–729. https://doi.org/10.1523/JNEUROSCI.2962-15.2016
Köhler, W. (1920). Die physischen Gestalten in Ruhe und im stationären Zustand [The physical Gestalten at rest and in stationary state]. Friedr. Vieweg & Sohn.
Köhler, W. (1940). Dynamics in psychology. Liveright.
Köhler, W. (1993). Letter to Abraham S. Luchins (December 6, 1951). "... The principle of Prägnanz is probably in need of a revised formulation...". Gestalt Theory, 15(3–4), 297–298. (Original work published 1951)
Kondo, A., Murai, Y., & Whitney, D. (2022). The test-retest reliability and spatial tuning of serial dependence in orientation perception. Journal of Vision, 22(4), 5. https://doi.org/10.1167/jov.22.4.5
Koutstaal, W., & Schacter, D. L. (1997). Gist-based false recognition of pictures in older and younger adults. Journal of Memory and Language, 37(4), 555–583. https://doi.org/10.1006/jmla.1997.2529
Krakowski, C.-S., Poirel, N., Vidal, J., Roëll, M., Pineau, A., Borst, G., & Houdé, O. (2016). The forest, the trees, and the leaves: Differences of processing across development. Developmental Psychology, 52(8), 1262–1272. https://doi.org/10.1037/dev0000138
Kruse, P. (1986). Wie unabhängig ist das Wahrnehmungsobjekt vom Prozeß der Identifikation: Ein Kommentar zu G. Kanizsa und R. Luccio [How independent is the perceptual object from the process of identification: A comment on G. Kanizsa and R. Luccio]. Gestalt Theory, 8(2), 141–143.
Kubilius, J., Sleurs, C., & Wagemans, J. (2017). Sensitivity to nonaccidental configurations of two-line stimuli. I-Perception, 8(2). https://doi.org/10.1177/2041669517699628
Kubilius, J., Wagemans, J., & Op de Beeck, H. P. (2014). Encoding of configural regularity in the human visual system. Journal of Vision, 14(9), 11. https://doi.org/10.1167/14.9.11
Kubovy, M., & Berg, M. (2002). Oblique effects in grouping: Surprising individual differences. Journal of Vision, 2(7), 480–480. https://doi.org/10.1167/2.7.480
Kubovy, M., Holcombe, A. O., & Wagemans, J. (1998). On the lawfulness of grouping by proximity. Cognitive Psychology, 35(1), 71–98. https://doi.org/10.1006/cogp.1997.0673
Kubovy, M., & van den Berg, M. (2008). The whole is equal to the sum of its parts: A probabilistic model of grouping by proximity and similarity in regular patterns. Psychological Review, 115(1), 131–154. https://doi.org/10.1037/0033-295X.115.1.131
Kubovy, M., & Wagemans, J. (1995). Grouping by proximity and multistability in dot lattices: A quantitative Gestalt theory. Psychological Science, 6(4), 225–234. https://doi.org/10.1111/j.1467-9280.1995.tb00597.x
Kuhl, P. K. (1991). Human adults and human infants show a “perceptual magnet effect” for the prototypes of speech categories, monkeys do not. Perception & Psychophysics, 50(2), 93–107. https://doi.org/10.3758/BF03212211
Lab, V. (2021). Colour (Version 0.1.5) [Computer software]. http://github.com/vaab/colour
Langlois, T. A., Jacoby, N., Suchow, J. W., & Griffiths, T. L. (2021). Serial reproduction reveals the geometry of visuospatial representations. Proceedings of the National Academy of Sciences, 118(13), e2012938118. https://doi.org/10.1073/pnas.2012938118
Lee, K., Byatt, G., & Rhodes, G. (2000). Caricature effects, distinctiveness, and identification: Testing the face-space framework. Psychological Science, 11(5), 379–385. https://doi.org/10.1111/1467-9280.00274
Leeuwenberg, E. L. J., & Boselie, F. (1988). Against the likelihood principle in visual form perception. Psychological Review, 95(4), 485–491. https://doi.org/10.1037/0033-295x.95.4.485
Leeuwenberg, E. L. J., & van der Helm, P. A. (2012). Structural Information Theory: The simplicity of visual form. Cambridge University Press. https://doi.org/10.1017/CBO9781139342223
Leeuwenberg, E. L. J., & van der Helm, P. A. (1991). Unity and variety in visual form. Perception, 20(5), 595–622. https://doi.org/10.1068/p200595
Legrenzi, P. (1994). Kanizsa’s analysis of "Prägnanz" as an obstacle to problem solving and the theory of mental models. Japanese Psychological Research, 36(3), 121–125.
Leyton, M. (1992). Symmetry, causality, mind. MIT Press.
Lieder, I., Adam, V., Frenkel, O., Jaffe-Dax, S., Sahani, M., & Ahissar, M. (2019). Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia. Nature Neuroscience, 22(2), 256–264. https://doi.org/10.1038/s41593-018-0308-9
Locher, P. J., Stappers, P. J., & Overbeeke, K. (1998). The role of balance as an organizing design principle underlying adults’ compositional strategies for creating visual displays. Acta Psychologica, 99(2), 141–161. https://doi.org/10.1016/S0001-6918(98)00008-0
Long, B., Fan, J. E., Huey, H., Chai, Z., & Frank, M. C. (2021). Parallel developmental changes in children’s production and recognition of line drawings of visual concepts [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/5yv7x
Long, B., Wang, Y., Christie, S., Frank, M. C., & Fan, J. E. (2022). Developmental consistency in children’s drawings of object categories [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/fpebs
Luccio, R. (2019). Perceptual simplicity: The true role of Prägnanz and Occam. Gestalt Theory, 41(3), 263–276. https://doi.org/10.2478/gth-2019-0024
Luchins, A. S., & Luchins, E. H. (1998). Commentary on Vicario’s "On Wertheimer’s principles of organization". Gestalt Theory, 20(4), 270–282.
Manassi, M., Liberman, A., Kosovicheva, A., Zhang, K., & Whitney, D. (2018). Serial dependence in position occurs at the time of perception. Psychonomic Bulletin & Review, 25(6), 2245–2253. https://doi.org/10.3758/s13423-018-1454-5
Mao, J., & Stocker, A. A. (2022). Holistic inference explains human perception of stimulus orientation [Preprint]. bioRxiv. https://doi.org/10.1101/2022.06.24.497534
Mardia, K. V., & Jupp, P. E. (2000). Directional Statistics. Wiley.
Marković, S., & Gvozdenovi, V. (2001). Symmetry, complexity and perceptual economy: Effects of minimum and maximum simplicity conditions. Visual Cognition, 8(3-5), 305–327. https://doi.org/10.1080/13506280143000025
Martin, P., Uy, N., Kvapil, M., & Friedenberg, J. (2020). The aesthetics of frieze patterns A preference for emergent features [Poster]. https://doi.org/10.13140/RG.2.2.34413.74721
Mather, G. (2018). Visual image statistics in the history of Western art. Art and Perception, 6(2-3), 97–115. https://doi.org/10.1163/22134913-20181092
Mather, G. (2020). Aesthetic image statistics vary with artistic genre. Vision, 4(1), 10. https://doi.org/10.3390/vision4010010
Mattar, M. G., Carter, M. V., Zebrowitz, M. S., Thompson-Schill, S. L., & Aguirre, G. K. (2018). Individual differences in response precision correlate with adaptation bias. Journal of Vision, 18(13). https://doi.org/10.1167/18.13.18
Mattar, M. G., Kahn, D. A., Thompson-Schill, S. L., & Aguirre, G. K. (2016). Varying timescales of stimulus integration unite neural adaptation and prototype formation. Current Biology, 26(13), 1669–1676. https://doi.org/10.1016/j.cub.2016.04.065
Matthews, W. J., & Adams, A. (2008). Another reason why adults find it hard to draw accurately. Perception, 37(4), 628–630. https://doi.org/10.1068/p5895
Mauro, R., & Kubovy, M. (1992). Caricature and face recognition. Memory & Cognition, 20(4), 433–440. https://doi.org/10.3758/BF03210927
Maus, G. W., Chaney, W., Liberman, A., & Whitney, D. (2013). The challenge of measuring long-term positive aftereffects. Current Biology : CB, 23(10). https://doi.org/10.1016/j.cub.2013.03.024
Mayer, S. (2021). Imagefluency: Image statistics based on processing fluency. Zenodo. https://doi.org/10.5281/zenodo.5614666
Mayer, S., & Landwehr, J. R. (2018a). Objective measures of design typicality. Design Studies, 54, 146–161. https://doi.org/10.1016/j.destud.2017.09.004
Mayer, S., & Landwehr, J. R. (2018b). Quantifying visual aesthetics based on processing fluency theory: Four algorithmic measures for antecedents of aesthetic preferences. Psychology of Aesthetics, Creativity, and the Arts, 12(4), 399–431. https://doi.org/10.1037/aca0000187
McCloud, S. (1993). Understanding comics: The invisible art. HarperCollins Publishers.
McGovern, D. P., Walsh, K. S., Bell, J., & Newell, F. N. (2017). Individual differences in context-dependent effects reveal common mechanisms underlying the direction aftereffect and direction repulsion. Vision Research, 141, 109–116. https://doi.org/10.1016/j.visres.2016.08.009
McMurray, B. (2022). The myth of categorical perception [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/dq7ej
Medin, D. L. (1989). Concepts and conceptual structure. American Psychologist, 44(12), 1469–1481. https://doi.org/10.1037/0003-066X.44.12.1469
Medin, D. L., & Barsalou, L. W. (1987). Categorization processes and categorical perception. In Categorical perception: The groundwork of cognition (pp. 455–490). Cambridge University Press.
Mersmann, O., Trautmann, H., Steuer, D., & Bornkamp, B. (2018). Truncnorm: Truncated normal distribution. https://CRAN.R-project.org/package=truncnorm
Metzger, W. (1941). Psychologie: Die Entwicklung ihrer Grundannahmen seit der Einführung des Experiments [Psychology: The development of its basic assumptions since the introduction of the experiment.]. Springer-Verlag. https://link.springer.com/book/10.1007/978-3-642-53395-2
Metzger, W. (1954). Grundbegriffe der Gestaltpsychologie. In Aktuelle Probleme der Gestalttheorie (Ajuriaguerra, Juan de).
Metzger, W. (1966). Figural-wahrnemung [Figural perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.), Allgemeine Psychologie [General psychology] (pp. 693–744). Hogrefe.
Metzger, W. (1975). Gesetze des Sehens [Laws of seeing] (Third edition). Kramer.
Metzger, W. (2006). Laws of seeing. MIT Press. (Original work published 1936)
Microsoft, & Weston, S. (2020). Foreach: Provides foreach looping construct. https://CRAN.R-project.org/package=foreach
Miller, J., & Schwarz, W. (2018). Implications of individual differences in on-average null effects. Journal of Experimental Psychology: General, 147(3), 377–397. https://doi.org/10.1037/xge0000367
Miller, M. B., & Gazzaniga, M. S. (1998). Creating false memories for visual scenes. Neuropsychologia, 36(6), 513–520. https://doi.org/10.1016/S0028-3932(97)00148-6
Mitchell, P., Ropar, D., Ackroyd, K., & Rajendran, G. (2005). How perception impacts on drawings. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 996–1003. https://doi.org/10.1037/0096-1523.31.5.996
Moitzi, M. (2021). Svgwrite (Version 1.4.1) [Computer software]. http://github.com/mozman/svgwrite.git
Mollon, J. D., Bosten, J. M., Peterzell, D. H., & Webster, M. A. (2017). Individual differences in visual science: What can be learned and what is good experimental practice? Vision Research, 141, 4–15. https://doi.org/10.1016/j.visres.2017.11.001
Morey, R. D., & Rouder, J. N. (2018). BayesFactor: Computation of bayes factors for common designs. https://CRAN.R-project.org/package=BayesFactor
Müller, K. (2020). Here: A simpler way to find your files. https://CRAN.R-project.org/package=here
Müller, K., & Wickham, H. (2022). Tibble: Simple data frames. https://CRAN.R-project.org/package=tibble
Murdoch, D., & Chow, E. D. (2020). Ellipse: Functions for drawing ellipses and ellipse-like confidence regions. https://CRAN.R-project.org/package=ellipse
Muth, C., & Carbon, C.-C. (2013). The Aesthetic Aha: On the pleasure of having insights into Gestalt. Acta Psychologica, 144(1), 25–30. https://doi.org/10.1016/j.actpsy.2013.05.001
Muth, C., & Carbon, C.-C. (2016). SeIns: Semantic instability in art. Art and Perception, 4(1-2), 145–184. https://doi.org/10.1163/22134913-00002049
Muth, C., Pepperell, R., & Carbon, C.-C. (2013). Give me Gestalt! Preference for cubist artworks revealing high detectability of objects. Leonardo, 46(5), 488–489. https://doi.org/10.1162/LEON_a_00649
Muth, C., Westphal-Fitch, G., & Carbon, C.-C. (2019). Seeking (dis)order: Ordering appeals but slight disorder and complex order trigger interest. Psychology of Aesthetics, Creativity, and the Arts. https://doi.org/10.1037/aca0000284
Nadal, M., Munar, E., Marty, G., & Cela-Conde, C. J. (2010). Visual complexity and beauty appreciation: Explaining the divergence of results. Empirical Studies of the Arts, 28(2), 173–191. https://doi.org/10.2190/EM.28.2.d
Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353–383. https://doi.org/10.1016/0010-0285(77)90012-3
Necker, L. A. (1832). Observations on some remarkable optical phaenomena seen in Switzerland; and on an optical phaenomenon which occurs on viewing a figure of a crystal or geometrical solid. London and Edinburgh Philosophical Magazine and Journal of Science. Third Series, 1, 329–337.
Newell, A. (1973). You can’t play 20 questions with nature and win: Projective comments on the papers of this symposium. In Visual Information Processing (pp. 283–308). Elsevier. https://doi.org/10.1016/B978-0-12-170150-5.50012-3
Newell, F. N., & Bulthoff, H. H. (2002). Categorical perception of familiar objects. Cognition, 85, 113–143. https://doi.org/10.1016/S0010-0277(02)00104-X
Ni, L., & Stocker, A. A. (2023). Efficient sensory encoding predicts robust averaging. Cognition, 232, 105334. https://doi.org/10.1016/j.cognition.2022.105334
Noel, J.-P., Zhang, L.-Q., Stocker, A. A., & Angelaki, D. E. (2021). Individuals with autism spectrum disorder have altered visual encoding capacity. PLOS Biology, 19(5), e3001215. https://doi.org/10.1371/journal.pbio.3001215
Nosofsky, R. M. (1991). Stimulus bias, asymmetric similarity, and classification. Cognitive Psychology, 23(1), 94–140. https://doi.org/10.1016/0010-0285(91)90004-8
Ooms, J. (2021). Magick: Advanced graphics and image-processing in r. https://CRAN.R-project.org/package=magick
Op de Beeck, H., Wagemans, J., & Vogels, R. (2003a). Asymmetries in stimulus comparisons by monkey and man. Current Biology, 13(20), 1803–1808. https://doi.org/10.1016/j.cub.2003.09.036
Op de Beeck, H., Wagemans, J., & Vogels, R. (2003b). The effect of category learning on the representation of shape: Dimensions can be biased but not differentiated. Journal of Experimental Psychology: General, 132(4), 491–511. https://doi.org/10.1037/0096-3445.132.4.491
Ostrofsky, J., Kozbelt, A., & Cohen, D. J. (2015). Observational drawing biases are predicted by biases in perception: Empirical support of the misperception hypothesis of drawing accuracy with respect to two angle illusions. Quarterly Journal of Experimental Psychology, 68(5), 1007–1025. https://doi.org/10.1080/17470218.2014.973889
Ostrofsky, J., Kozbelt, A., & Seidel, A. (2012). Perceptual constancies and visual selection as predictors of realistic drawing skill. Psychology of Aesthetics, Creativity, and the Arts, 6(2), 124–136. https://doi.org/10.1037/a0026384
Palmer, S. E. (1982). Symmetry, transformation, and the structure of perceptual systems. In J. Beck (Ed.), Organization and representation in perception (pp. 95–144). Lawrence Erlbaum.
Palmer, S. E. (1991). Goodness, Gestalt, groups, and Garner: Local symmetry subgroups as a theory of figural goodness. In G. R. Lockhead & J. R. Pomerantz (Eds.), The perception of structure: Essays in honor of Wendell R. Garner (pp. 23–39). American Psychological Association. https://doi.org/10.1037/10101-001
Palmer, S. E., Schloss, K. B., & Sammartino, J. (2013). Visual aesthetics and human preference. Annual Review of Psychology, 64(1), 77–107. https://doi.org/10.1146/annurev-psych-120710-100504
Panis, S., Wagemans, J., & Op de Beeck, H. P. (2011). Dynamic norm-based encoding for unfamiliar shapes in human visual cortex. Journal of Cognitive Neuroscience, 23(7), 1829–1843. https://doi.org/10.1162/jocn.2010.21559
Pascucci, D., Mancuso, G., Santandrea, E., Libera, C. D., Plomp, G., & Chelazzi, L. (2019). Laws of concatenated perception: Vision goes for novelty, decisions for perseverance. PLOS Biology, 17(3), e3000144. https://doi.org/10.1371/journal.pbio.3000144
Pascucci, D., Tanrikulu, Ö. D., Ozkirli, A., Houborg, C., Ceylan, G., Zerr, P., Rafiei, M., & Kristjánsson, Á. (2023). Serial dependence in visual perception: A review. Journal of Vision, 23(1), 9. https://doi.org/10.1167/jov.23.1.9
Pastore, R. E. (1987). Categorical perception: Some psychophysical models. In Categorical perception: The groundwork of cognition (pp. 29–52). Cambridge University Press.
Patching, G. R., Englund, M. P., & Hellström, Å. (2012). Time- and space-order effects in timed discrimination of brightness and size of paired visual stimuli. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 915–940. https://doi.org/10.1037/a0027593
Pedersen, T. L. (2021). Ggforce: Accelerating ’ggplot2’. https://CRAN.R-project.org/package=ggforce
Pedersen, T. L. (2022). Patchwork: The composer of plots. https://CRAN.R-project.org/package=patchwork
Peirce, J. W. (2007). PsychoPyPsychophysics software in Python. Journal of Neuroscience Methods, 162(1), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
Pepperell, R. (2018). Art, energy, and the brain. In J. F. Christensen & A. Gomila (Eds.), Progress in Brain Research (Vol. 237, pp. 417–435). Elsevier. https://doi.org/10.1016/bs.pbr.2018.03.022
Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive scientific computing. Computing in Science & Engineering, 9(3). https://doi.org/10.1109/MCSE.2007.53
Petermann, B. (1931). Das Gestaltproblem in der Psychologie im Lichte analytischer Besinnung: Ein Versuch zu grundsätzlicher Orientierung [The Gestalt problem in psychology in the light of analytical reflection: An attempt at fundamental orientation]. Verlag von Johann Ambrosius.
Peterson, M. A., & Gibson, B. S. (1994). Object recognition contributions to figure-ground organization: Operations on outlines and subjective contours. Perception & Psychophysics, 56(5), 551–564. https://doi.org/10.3758/BF03206951
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1), 7–11. https://journal.r-project.org/archive/
Poirel, N., Pineau, A., & Mellet, E. (2006). Implicit identification of irrelevant local objects interacts with global/local processing of hierarchical stimuli. Acta Psychologica, 122(3), 321–336. https://doi.org/10.1016/j.actpsy.2005.12.010
Polk, T. A., Behensky, C., Gonzalez, R., & Smith, E. E. (2002). Rating the similarity of simple perceptual stimuli: Asymmetries induced by manipulating exposure frequency. Cognition, 82(3), B75–B88. https://doi.org/10.1016/S0010-0277(01)00151-2
Pomerantz, J. R. (1977). Pattern goodness and speed of encoding. Memory & Cognition, 5(2), 235–241. https://doi.org/10.3758/BF03197367
Pomerantz, J. R., & Garner, W. R. (1973). The role of configuration and target discriminability in a visual search task. Memory & Cognition, 1(1), 64–68. https://doi.org/10.3758/BF03198070
Pomerantz, J. R., & Kubovy, M. (1986). Theoretical approaches to perceptual organization: Simplicity and likelihood principles. In Handbook of perception and human performance, Vol. 2: Cognitive processes and performance. (pp. 1–46). John Wiley & Sons.
Port, A. (2021). Svgpathtools (Version 1.4.1) [Computer software]. https://github.com/mathandy/svgpathtools
Post, R. A. G., Blijlevens, J., & Hekkert, P. (2016). To preserve unity while almost allowing for chaos”: Testing the aesthetic principle of unity-in-variety in product design. Acta Psychologica, 163, 142–152. https://doi.org/10.1016/j.actpsy.2015.11.013
Prasad, D., & Bainbridge, W. A. (2022). The visual Mandela effect as evidence for shared and specific false memories across people. Psychological Science, 33(12), 1971–1988. https://doi.org/10.1177/09567976221108944
Quinlan, P. T., & Wilton, R. N. (1998). Grouping by proximity or similarity? Competition between the Gestalt principles in vision. Perception, 27(4), 417–430. https://doi.org/10.1068/p270417
Quinn, P. C. (2000). Perceptual reference points for form and orientation in young infants: Anchors or magnets? Perception & Psychophysics, 62(8), 1625–1633. https://doi.org/10.3758/BF03212160
R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rausch, E. (1952). Struktur und Metrik figural-optischer Wahrnehmung [Structure and metrics of figural-optical perception]. Verlag Dr. Waldemar Kramer.
Rausch, E. (1966). Das Eigenschaftsproblem in der Gestalttheorie der Wahrnemung [The property problem in the Gestalt theory of perception]. In W. Metzger, R. Bergius, & H. Thomae (Eds.), Allgemeine Psychologie [General psychology] (pp. 866–953). Hogrefe.
Rausch, E. (1979/1992). Neun Wünsche an die Zukunft der Psychologie (Auszugsweiser Nachdruck eines 1979 erschienenen Gesprächs mit E. Rausch) [Nine wishes for the future of psychology (Excerpt reprint of a 1979 reprint of a conversation with E. Rausch published in 1979)]. Gestalt Theory, 14(2), 143–144.
Rauschenberger, R., & Yantis, S. (2006). Perceptual encoding efficiency in visual search. Journal of Experimental Psychology: General, 135(1), 116–131. https://doi.org/10.1037/0096-3445.135.1.116
Redies, C., Brachmann, A., & Wagemans, J. (2017). High entropy of edge orientations characterizes visual artworks from diverse cultural backgrounds. Vision Research, 133, 130–144. https://doi.org/10.1016/j.visres.2017.02.004
Regebro, L. (2021). Svg.path (Version 4.1) [Computer software]. https://github.com/regebro/svg.path
Repp, B. H., & Liberman, A. M. (1987). Phonetic category boundaries are flexible. In Categorical perception: The groundwork of cognition (pp. 89–112). Cambridge University Press.
Rhodes, G., Brennan, S., & Carey, S. (1987). Identification and ratings of caricatures: Implications for mental representations of faces. Cognitive Psychology, 19(4), 473–497. https://doi.org/10.1016/0010-0285(87)90016-8
Rhodes, G., & McLean, I. G. (1990). Distinctiveness and expertise effects with homogeneous stimuli: Towards a model of configural coding. Perception, 19(6), 773–794. https://doi.org/10.1068/p190773
Riou, B., Lesourd, M., Brunel, L., & Versace, R. (2011). Visual memory and visual perception: When memory improves visual search. Memory & Cognition, 39(6), 1094–1102. https://doi.org/10.3758/s13421-011-0075-2
Roberson, D., Damjanovic, L., & Pilling, M. (2007). Categorical perception of facial expressions: Evidence for a “category adjustment” model. Memory & Cognition, 35(7), 1814–1829. https://doi.org/10.3758/BF03193512
Roberson, D., Hanley, J. R., & Pak, H. (2009). Thresholds for color discrimination in English and Korean speakers. Cognition, 112(3), 482–487. https://doi.org/10.1016/j.cognition.2009.06.008
Robert, M. B. L. (1999). A unified account of the effects of caricaturing faces. Visual Cognition, 6(1), 1–42. https://doi.org/10.1080/713756800
Robinson, A., Becker, R., the ReportLab team, & the community. (2021). Reportlab: The Reportlab Toolkit (Version 3.6.1) [Computer software]. http://www.reportlab.com/
Rodríguez, J., Bortfeld, H., Rudomín, I., Hernández, B., & Gutiérrez-Osuna, R. (2009). The reverse-caricature effect revisited: Familiarization with frontal facial caricatures improves veridical face recognition. Applied Cognitive Psychology, 23(5), 733–742. https://doi.org/10.1002/acp.1539
Roediger III, H. L., & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(4), 803–814. https://doi.org/10.1037/0278-7393.21.4.803
Rogers, B. (2014). Delusions about Illusions. Perception, 43(9), 840–845. https://doi.org/10.1068/p7731
Rosch, E. (1973). On the internal structure of perceptual and semantic categories. In T. E. Moore (Ed.), Cognitive development and acquisition of language (pp. 111–144). Academic Press. https://doi.org/10.1016/B978-0-12-505850-6.50010-4
Rosch, E. (1975). Cognitive reference points. Cognitive Psychology, 7(4), 532–547. https://doi.org/10.1016/0010-0285(75)90021-3
Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Lawrence Erlbaum.
Rosielle, L. J., & Hite, L. A. (2009). The caricature effect in drawing: Evidence for the use of categorical relations when drawing abstract pictures. Perception, 38(3), 357–375. https://doi.org/10.1068/p5831
Rouder, J. N. (2019). On the interpretation of Bayes Factors: A reply to de Heide and Grunwald [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/m6dhw
Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic Bulletin & Review, 21(2), 301–308. https://doi.org/10.3758/s13423-014-0595-4
Rouder, J. N., & Haaf, J. M. (2019). A psychometrics of individual differences in experimental tasks. Psychonomic Bulletin & Review, 26(2), 452–467. https://doi.org/10.3758/s13423-018-1558-y
Sablé-Meyer, M., Fagot, J., Caparos, S., van Kerkoerle, T., Amalric, M., & Dehaene, S. (2021). Sensitivity to geometric shape regularity in humans and baboons: A putative signature of human singularity. Proceedings of the National Academy of Sciences, 118(16), e2023123118. https://doi.org/10.1073/pnas.2023123118
Sadil, P., Cowell, R., & Huber, D. E. (2021). The push-pull of serial dependence effects: Attraction to the prior response and repulsion from the prior stimulus [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/f52yz
Samuel, A. G. (1982). Phonetic prototypes. Perception & Psychophysics, 31(4), 307–314. https://doi.org/10.3758/BF03202653
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J. (2021). GGally: Extension to ’ggplot2’. https://CRAN.R-project.org/package=GGally
Schönbrodt, F. D., & Wagenmakers, E.-J. (2018). Bayes factor design analysis: Planning for compelling evidence. Psychonomic Bulletin & Review, 25(1), 128–142. https://doi.org/10.3758/s13423-017-1230-y
Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., & Perugini, M. (2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
Schumann, F. (1914). Bericht über den VI. Kongreß für experimentelle Psychologie in Göttingen vom 15. Bis 18. April 1914 [Report on the VI Congress of Experimental Psychology in Göttingen from April 15 to 18, 1914].
Schurger, A., Sarigiannidis, I., Naccache, L., Sitt, J. D., & Dehaene, S. (2015). Cortical activity is more stable when sensory stimuli are consciously perceived. Proceedings of the National Academy of Sciences, 112(16), E2083–E2092. https://doi.org/10.1073/pnas.1418730112
Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a unified theory of visual memory strength. Nature Human Behaviour, 1–17. https://doi.org/10.1038/s41562-020-00938-0
Schwiedrzik, C. M., Ruff, C. C., Lazar, A., Leitner, F. C., Singer, W., & Melloni, L. (2014). Untangling perceptual memory: Hysteresis and adaptation map into separate cortical networks. Cerebral Cortex, 24(5), 1152–1164. https://doi.org/10.1093/cercor/bhs396
Schwiedrzik, C. M., Sudmann, S. S., Thesen, T., Wang, X., Groppe, D. M., Mégevand, P., Doyle, W., Mehta, A. D., Devinsky, O., & Melloni, L. (2018). Medial prefrontal cortex supports perceptual memory. Current Biology, 28(18), R1094–R1095. https://doi.org/10.1016/j.cub.2018.07.066
Seamon, J. G., Luo, C. R., Schlegel, S. E., Greene, S. E., & Goldenberg, A. B. (2000). False memory for categorized pictures and words: The category associates procedure for studying memory errors in children and adults. Journal of Memory and Language, 42(1), 120–146. https://doi.org/10.1006/jmla.1999.2676
Sheehan, T. C., & Serences, J. T. (2023). Distinguishing response from stimulus driven history biases [Preprint]. bioRxiv. https://doi.org/10.1101/2023.01.11.523637
Shepard, R. (1987). Toward a universal law of generalization for psychological science. Science, 237(4820), 1317–1323. https://doi.org/10.1126/science.3629243
Shier, J. (2011). Filling space with random fractal non-overlapping simple shapes. 10.
Shier, J., & Bourke, P. (2013). An algorithm for random fractal filling of space: An algorithm for random fractal filling of space. Computer Graphics Forum, 32(8), 89–97. https://doi.org/10.1111/cgf.12163
Sims, C. R. (2018). Efficient coding explains the universal law of generalization in human perception. Science, 360(6389), 652–656. https://doi.org/10.1126/science.aaq1118
Smets, G. (1973). Aesthetic judgment and arousal: An experimental contribution to psycho-aesthetics. Leuven University Press.
Smith, B. (Ed.). (1988). Foundations of Gestalt theory. Philosophia Verlag.
Snyder, H. K., Rafferty, S. M., Haaf, J. M., & Rouder, J. N. (2019). Common or distinct attention mechanisms for contrast and assimilation? Attention, Perception, & Psychophysics, 81(6), 1944–1950. https://doi.org/10.3758/s13414-019-01713-8
Snyder, J. S., Schwiedrzik, C. M., Vitela, A. D., & Melloni, L. (2015). How previous experience shapes perception in different sensory modalities. Frontiers in Human Neuroscience, 9, 594. https://doi.org/10.3389/fnhum.2015.00594
Song, C., Schwarzkopf, D. S., Lutti, A., Li, B., Kanai, R., & Rees, G. (2013). Effective connectivity within human primary visual cortex predicts interindividual diversity in illusory perception. Journal of Neuroscience, 33(48), 18781–18791. https://doi.org/10.1523/jneurosci.4201-12.2013
Song, C., Schwarzkopf, D. S., & Rees, G. (2013). Variability in visual cortex size reflects tradeoff between local orientation sensitivity and global orientation modulation. Nature Communications, 4(1), 2201. https://doi.org/10.1038/ncomms3201
Sorge, S. (1940). Neue versuche über die wiedergabe abstrakter optischer gebilde [New experiments on the reproduction of abstract optical formations]. Archiv für die gesamte Psychologie, 106, 1–88.
Spehar, B., Walker, N., & Taylor, R. P. (2016). Taxonomy of individual variations in aesthetic responses to fractal patterns. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00350
Spröte, P., Schmidt, F., & Fleming, R. W. (2016). Visual perception of shape altered by inferred causal history. Scientific Reports, 6(1), 36245. https://doi.org/10.1038/srep36245
Stadler, M., Stegnano, L., & Trombini, G. (1979). Quantitative Analyse der Rauschschen Prägnanzaspekte [quantitative analysis of Rausch’ Prägnanz aspects]. Gestalt Theory, 1, 28–40.
Stan Development Team. (2020a). RStan: The R interface to Stan. http://mc-stan.org/
Stan Development Team. (2020b). StanHeaders: Headers for the R interface to Stan. https://mc-stan.org/
Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712. https://doi.org/10.1177/1745691616658637
Stein, H., Barbosa, J., Rosa-Justicia, M., Prades, L., Morató, A., Galan-Gadea, A., Ariño, H., Martinez-Hernandez, E., Castro-Fornieles, J., Dalmau, J., & Compte, A. (2020). Reduced serial dependence suggests deficits in synaptic potentiation in anti-NMDAR encephalitis and schizophrenia. Nature Communications, 11(1), 4250. https://doi.org/10.1038/s41467-020-18033-3
Stevenage, S. V. (1995). Can caricatures really produce distinctiveness effects? British Journal of Psychology, 86(1), 127–146.
Strother, L., & Kubovy, M. (2006). On the surprising salience of curvature in grouping by proximity. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 226–234. https://doi.org/10.1037/0096-1523.32.2.226
Strother, L., & Kubovy, M. (2012). Structural salience and the nonaccidentality of a Gestalt. Journal of Experimental Psychology: Human Perception and Performance, 38(4), 827–832. https://doi.org/10.1037/a0027939
Sun, Z., & Firestone, C. (2021). Curious objects: How visual complexity guides attention and engagement. Cognitive Science, 45(4). https://doi.org/10.1111/cogs.12933
Sundqvist, F. (2003). Perceptual dynamics: Theoretical foundations and philosophical implications of Gestalt psychology [PhD thesis]. Göteborg University; Acta Universitatis Gothoburgensis.
Taubert, J., Alais, D., & Burr, D. (2016). Different coding strategies for the perception of stable and changeable facial attributes. Scientific Reports, 6(1), 32239. https://doi.org/10.1038/srep32239
Telenczuk, B. (2021). Svgutils (Version 0.3.4) [Computer software]. https://svgutils.readthedocs.io
Thomas, B. G. (2012). 15 - Colour symmetry: The systematic coloration of patterns and tilings. In J. Best (Ed.), Colour Design (pp. 381–432). Woodhead Publishing. https://doi.org/10.1533/9780857095534.3.381
Tiedemann, F. (2020). Gghalves: Compose half-half plots using your favourite geoms. https://CRAN.R-project.org/package=gghalves
Tinbergen, N. (1951). The study of instinct. Clarendon Press.
Tomassini, A., Morgan, M. J., & Solomon, J. A. (2010). Orientation uncertainty reduces perceived obliquity. Vision Research, 50(5), 541–547. https://doi.org/10.1016/j.visres.2009.12.005
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352. https://doi.org/10.1037/0033-295X.84.4.327
Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nature Communications, 8(1), 14637. https://doi.org/10.1038/ncomms14637
Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649–675. https://doi.org/10.1037/a0037665
Van de Cruys, S., & Wagemans, J. (2011). Putting reward in art: A tentative prediction error account of visual art. I-Perception, 2(9), 1035–1062. https://doi.org/10.1068/i0466aap
van der Helm, P. A. (2000). Simplicity versus likelihood in visual perception: From surprisals to precisals. Psychological Bulletin, 126(5), 770–800. https://doi.org/10.1037/0033-2909.126.5.770
van der Helm, P. A. (2017). On Bayesian simplicity in human visual perceptual organization. Perception, 46(11), 1269–1282. https://doi.org/10.1177/0301006617719604
Van der Hulst, E., Van Geert, E., & Wagemans, J. (in preparation). Shape variation in proximity grouping: An individual differences approach.
Van der Hulst, E., van Heusden, E., Wagemans, J., & Moors, P. (2022). Grouping by proximity and luminance similarity is additive for everyone: An analysis of individual differences in grouping sensitivity. Retrieved from osf.io/p845j.
Van Geert, E., Bossens, C., & Wagemans, J. (2022). The Order & Complexity Toolbox for Aesthetics (OCTA): A systematic approach to study the relations between order, complexity, and aesthetic appreciation. Behavior Research Methods. https://doi.org/10.3758/s13428-022-01900-w
Van Geert, E., Ding, R., & Wagemans, J. (2021). A cross-cultural comparison of aesthetic preferences for neatly organized compositions: Native Chinese- vs. native Dutch-speaking samples [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/679zm
Van Geert, E., Frérart, L., & Wagemans, J. (2022). Towards the most prägnant Gestalt: Leveling and sharpening as contextually dependent adaptive strategies [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/t3bzw
Van Geert, E., Hofmann, D., & Wagemans, J. (in preparation). The perception and appreciation of order and complexity.
Van Geert, E., Moors, P., Haaf, J., & Wagemans, J. (2022). Same stimulus, same temporal context, different percept? Individual differences in hysteresis and adaptation when perceiving multistable dot lattices. I-Perception, 13(4), 20416695221109300. https://doi.org/10.1177/20416695221109300
Van Geert, E., & Wagemans, J. (2020). Order, complexity, and aesthetic appreciation. Psychology of Aesthetics, Creativity, and the Arts, 14(2), 135–154. https://doi.org/10.1037/aca0000224
Van Geert, E., & Wagemans, J. (2021). Order, complexity, and aesthetic preferences for neatly organized compositions. Psychology of Aesthetics, Creativity, and the Arts, 15(3), 484–504. https://doi.org/10.1037/aca0000276
Van Geert, E., & Wagemans, J. (2022). What good is goodness? The effects of reference points on discrimination and categorization of shapes [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/6x75c
Van Geert, E., & Wagemans, J. (2023). Prägnanz in visual perception [Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/pxdg4
Van Geert, E., & Wagemans, J. (in preparation a). Pre-existing categorization diminishes attractive and repulsive temporal history effects on perception.
Van Geert, E., & Wagemans, J. (in preparation b). Individual differences in the use of perceptual history in the visual categorization of abstract shapes.
Van Geert, E., Warny, A., & Wagemans, J. (in preparation). A systematic approach to study preferences for complexity.
van Leeuwen, C. (1990). Perceptual-learning systems as conservative structures: Is economy an attractor? Psychological Research, 52(2), 145–152. https://doi.org/10.1007/BF00877522
van Lier, R., van der Helm, P., & Leeuwenberg, E. L. J. (1994). Integrating global and local aspects of visual occlusion. Perception, 23(8), 883–903. https://doi.org/10.1068/p230883
Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam.
Van Rossum, G., & Drake Jr, F. L. (2009). Python 3 reference manual. CreateSpace.
Vanderplas, J. M., & Garvin, E. A. (1959). Complexity, association value, and practice as factors in shape recognition following paired-associates training. Journal of Experimental Psychology, 57(3), 155–163. https://doi.org/10.1037/h0042010
Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth). Springer. http://www.stats.ox.ac.uk/pub/MASS4/
vgalin. (2021). html2image (Version 1.1.2) [Computer software]. https://github.com/vgalin/html2image
von Ehrenfels, C. (1916). Höhe und Reinheit der Gestalt [Height and purity of Gestalt]. In Kosmogonie [Cosmogony] (pp. 93–96). Diederichs.
von Ehrenfels, C. (1922). Das Primzahlengesetz, entwickelt und dargestellt auf Grund der Gestalttheorie [The prime number law, developed and presented on the basis of the Gestalt theory]. O. R. Reisland.
von Ehrenfels, C. (1937). Über Gestaltqualitäten (1932) [On Gestalt qualities]. Philosophia (Belgrad), 2, 139–141. (Original work published 1932)
Wagemans, J. (1992). Perceptual use of nonaccidental properties. Canadian Journal of Psychology/Revue Canadienne de Psychologie, 46(2), 236–279. https://doi.org/10.1037/h0084323
Wagemans, J. (2015). Historical and conceptual background: Gestalt theory. In J. Wagemans (Ed.), The Oxford Handbook of Perceptual Organization. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199686858.013.026
Wagemans, J. (2018). Perceptual organization. In The Stevens’ Handbook of Experimental Psychology and Cognitive Neuroscience: Vol. 2. Sensation, Perception & Attention (pp. 803–872). John Wiley & Sons, Inc. https://doi.org/https://doi.org/10.1002/9781119170174.epcn218
Wagemans, J., Bossche, P. V., Segers, N., & d’Ydewalle, G. (1994). An affine group model and the perception of orthographically projected planar random polygons. Journal of Mathematical Psychology, 38(1), 59–72. https://doi.org/10.1006/jmps.1994.1003
Wagemans, J., Claessens, P. M. E., & Moors, P. (2018). Perceptual grouping in dot lattices revisited [41st European Conference on Visual Perception (ECVP)]. Abstract published in Perception, 48(S1) (Supplement). https://doi.org/10.1177/0301006618824879
Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & Heydt, R. von der. (2012). A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization. Psychological Bulletin, 138(6), 1172–1217. https://doi.org/10.1037/a0029333
Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm, P. A., & van Leeuwen, C. (2012). A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. Psychological Bulletin, 138(6), 1218–1252. https://doi.org/10.1037/a0029334
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). Bayesian hypothesis testing for psychologists: A tutorial on the Savage method. Cognitive Psychology, 60(3), 158–189. https://doi.org/10.1016/j.cogpsych.2009.12.001
Wei, X.-X., & Stocker, A. A. (2015). A Bayesian observer model constrained by efficient coding can explain ’anti-Bayesian’ percepts. Nature Neuroscience, 18(10), 1509–1517. https://doi.org/10.1038/nn.4105
Wei, X.-X., & Stocker, A. A. (2017). Lawful relation between perceptual bias and discriminability. Proceedings of the National Academy of Sciences, 114(38), 10244–10249. https://doi.org/10.1073/pnas.1619153114
Wellek, A. (1959). Das Prägnanzproblem der Gestaltpsychologie und das "Exemplarische" in der Pädagogik [The problem of Prägnanz in Gestalt psychology and the "exemplary" in pedagogy]. Zeitschrift für experimentelle und angewandte Psychologie, 6, 722–736.
Wertheimer, M. (1912). Über das Denken der Naturvölker. I. Zahlen und Zahlgebilde [About the thinking of people who live close to nature. I. Numbers and number formations.]. Zeitschrift für Psychologie, 60, 321–378.
Wertheimer, M. (1922). Untersuchungen zur Lehre von der Gestalt. I. Prinzipielle Bemerkungen [Investigations into the teachings of Gestalt. I. Remarks on its principles]. Psychologische Forschung, 1, 47–58. https://doi.org/10.1007/BF00410385
Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt. II [Investigations into the teachings of Gestalt. II. Psychological research]. Psychologische Forschung, 4, 301–350. https://doi.org/10.1007/BF00410640
Wertheimer, M. (1959). Productive thinking. Harper.
Wertheimer, M. (1999). Gestalt theory. Gestalt Theory, 21, 181–183. (Original work published 1924)
Wertheimer, M., Spillmann, L., Sarris, V., & Sekuler, R. (2012). On perceived motion and figural organization. MIT Press.
Westphal-Fitch, G., Huber, L., Gómez, J. C., & Fitch, W. T. (2012). Production and perception rules underlying visual patterns: Effects of symmetry and hierarchy. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598), 2007–2022. https://doi.org/10.1098/rstb.2012.0098
Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in vision break universality and time invariance. Proceedings of the National Academy of Sciences, 112(48), 14990–14995. https://doi.org/10.1073/pnas.1508847112
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations. https://CRAN.R-project.org/package=stringr
Wickham, H. (2022a). Forcats: Tools for working with categorical variables (factors). https://CRAN.R-project.org/package=forcats
Wickham, H. (2022b). Modelr: Modelling functions that work with the pipe. https://CRAN.R-project.org/package=modelr
Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
Wickham, H., & Bryan, J. (2022). Readxl: Read excel files. https://CRAN.R-project.org/package=readxl
Wickham, H., Bryan, J., & Barrett, M. (2021). Usethis: Automate package and project setup. https://CRAN.R-project.org/package=usethis
Wickham, H., François, R., Henry, L., & Müller, K. (2022). Dplyr: A grammar of data manipulation. https://CRAN.R-project.org/package=dplyr
Wickham, H., & Girlich, M. (2022). Tidyr: Tidy messy data. https://CRAN.R-project.org/package=tidyr
Wickham, H., Hester, J., & Bryan, J. (2022). Readr: Read rectangular text data. https://CRAN.R-project.org/package=readr
Wickham, H., Hester, J., Chang, W., & Bryan, J. (2021). Devtools: Tools to make developing r packages easier. https://CRAN.R-project.org/package=devtools
Wilhelm, S., & G, M. B. (2022). tmvtnorm: Truncated multivariate normal and student t distribution. https://CRAN.R-project.org/package=tmvtnorm
Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for ’ggplot2’. https://CRAN.R-project.org/package=cowplot
Wilson, A., & Chatterjee, A. (2005). The assessment of preference for balance: Introducing a new test. Empirical Studies of the Arts, 23(2), 165–180. https://doi.org/10.2190/B1LR-MVF3-F36X-XR64
Wohlfahrt, E. (1932). Der Auffassungsvorgang an kleinen Gestalten; Ein Beitrag zur Psychologie des Vorgestaltserlebnisses [the perceptual process of small figures; A contribution to the psychology of pre-Gestalt experience. Neue Psychologische Studien, 4, 347–414.
Wulf, F. (1922). Beiträge zur Psychologie der Gestalt. VI. Über die Veränderung yon Vorstellungen (Gedächtnis und Gestalt) [Contributions to the Psychology of Gestalt. VI. On the change of ideas (Memory and Gestalt)]. Psychologische Forschung, 1(1), 333–373. https://doi.org/10.1007/BF00410394
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman; Hall/CRC. https://yihui.org/knitr/
Yang, J., & Fan, J. (2021). Visual communication of object concepts at different levels of abstraction. Journal of Vision, 21(9), 2951. https://doi.org/10.1167/jov.21.9.2951
Yu, G. (2022). Ggimage: Use image in ’ggplot2’. https://CRAN.R-project.org/package=ggimage
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software, 11(10), 1–17. https://doi.org/10.18637/jss.v011.i10
Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software, 16(9), 1–16. https://doi.org/10.18637/jss.v016.i09
Zeileis, A., Köll, S., & Graham, N. (2020). Various versatile variances: An object-oriented implementation of clustered covariances in R. Journal of Statistical Software, 95(1), 1–36. https://doi.org/10.18637/jss.v095.i01
Zhang, H., & Alais, D. (2020). Individual difference in serial dependence results from opposite influences of perceptual choices and motor responses. Journal of Vision, 20(8), 2. https://doi.org/10.1167/jov.20.8.2
Zhu, H. (2021). kableExtra: Construct complex table with ’kable’ and pipe syntax. https://CRAN.R-project.org/package=kableExtra
Zimmer, A. C. (1991). The complementarity of singularity and stability. A comment on Kanizsa & Luccio’s "Analysis of the concept of Prägnanz" (1986). Gestalt Theory, 13(4), 276–282.